Return to search

A utility-based routing scheme in multi-hop wireless networks

Multi-hop wireless networks are infrastructure-less networks consisting of mobile or stationary wireless devices, which include multi-hop wireless mesh networks and multi-hop wireless sensor networks. These networks are characterized by limited bandwidth and energy resources, unreliable communication, and a lack of central control. These characteristics lead to the research challenges of multi-hop wireless networks. Building up routing schemes with good balance among the routing QoS (such as reliability, cost, and delay) is a paramount concern to achieve high performance wireless networks. These QoS metrics are internally correlated. Most existing works did not fully utilize this correlation. We design a metric to balance the trade-off between reliability and cost, and build up a framework of utility-based routing model in multi-hop wireless networks. This dissertation focuses on the variations with applications of utility-based routing models, designing new concepts, and developing new algorithms for them. A review of existing routing algorithms and the basic utility-based routing model for multi-hop wireless networks has been provided at the beginning. An efficient algorithm, called MaxUtility, has been proposed for the basic utility-based routing model. MaxUtility is an optimal algorithm that can find the best routing path with the maximum expected utility. / Various utility-based routing models are extended to further enhance the routing reliability while reducing the routing overhead. Besides computing the optimal path for a given benefit value and a given source-destination pair, the utility-based routing can be further extended to compute all optimal paths for all possible benefit values and/or all source-destination pairs. Our utility-based routing can also adapt to different applications and various environments. In the self-organized environment, where network users are selfish, we design a truthful routing, where selfish users have to tell the truth in order to maximize their utilities. We apply our utility-based routing scheme to the data-gathering wireless sensor networks, where a routing scheme is required to transmit data sensed by multiple sensor nodes to a common sink node. / by Mingming Lu. / Vita. / University Library's copy lacks signatures of Supervisory Committee. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, FL : 2008 Mode of access: World Wide Web.

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_4307
ContributorsLu, Mingming., College of Engineering and Computer Science, Florida Atlantic University (Degree grantor), Department of Computer and Electrical Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeText, Electronic Thesis or Dissertation
Formatxiv, 168 p. : ill., electronic
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0022 seconds