Description logics (DLs) are knowledge representation formalisms with well-understood model-theoretic semantics and computational properties. The DL SROIQ provides the logical underpinning for the semantic web language OWL 2, which is quickly becoming the standard for knowledge representation on the web. A central component of most DL applications is an efficient and scalable reasoner, which provides services such as consistency testing and classification. Despite major advances in DL reasoning algorithms over the last decade, however, ontologies are still encountered in practice that cannot be handled by existing DL reasoners. We present a novel reasoning calculus for the description logic SROIQ which addresses two of the major sources of inefficiency present in the tableau-based reasoning calculi used in state-of-the-art reasoners: unnecessary nondeterminism and unnecessarily large model sizes. Further, we describe a new approach to classification which exploits partial information about the subsumption relation between concept names to reduce both the number of individual subsumption tests performed and the cost of working with large ontologies; our algorithm is applicable to the general problem of deducing a quasi-ordering from a sequence of binary comparisons. We also present techniques for extracting partial information about the subsumption relation from the models generated by constructive DL reasoning methods, such as our hypertableau calculus. Empirical results from a prototypical implementation demonstrate substantial performance improvements compared to existing algorithms and implementations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:540275 |
Date | January 2011 |
Creators | Shearer, Robert D. C. |
Contributors | Horrocks, Ian : Motik, Boris |
Publisher | University of Oxford |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://ora.ox.ac.uk/objects/uuid:d7c4fbf6-4258-4db4-a451-476dcebe68ca |
Page generated in 0.002 seconds