Return to search

Uma ferramenta de auditoria para algoritmos de rearranjo de genomas / An audit tool for genome rearrangement algorithms

Orientador: Zanoni Dias / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-21T23:02:27Z (GMT). No. of bitstreams: 1
Galvao_GustavoRodrigues_M.pdf: 1280667 bytes, checksum: 0809ad85a3b7f16ff5d7af5fc4124f0a (MD5)
Previous issue date: 2012 / Resumo: Ao longo da evolução, mutações globais podem alterar a ordem dos genes de um genoma. Tais mutações são chamadas de eventos de rearranjo. Em Rearranjo de Genomas, estimamos a distância evolutiva entre dois genomas calculando-se a distância de rearranjo entre eles, que é o tamanho da menor sequência de eventos de rearranjo que transforma um genoma no outro. Representando genomas como permutações, nas quais os genes aparecem como elemento, à distância de rearranjo pode ser obtido resolvendo-se o problema combinatório de ordenar uma permutação utilizando o menor número de eventos de rearranjo. Este problema, que é referido como Problema da Ordenação por Rearranjo, varia de acordo com os tipos de eventos de rearranjo considerados. Nesta dissertação, focamos nosso estudo em dois tipos de eventos: reversões e transposições. Variações do Problema da Ordenação por Rearranjo que consideram esses eventos têm se mostrado difíceis de ser resolvida otimamente, por isso a maior parte dos algoritmos propostos - os quais denominamos genericamente por algoritmos de rearranjo de genomas - são aproximados e é esperado que os próximos avanços ocorram nesse sentido. Em razão disso, desenvolvemos uma ferramenta que avalia as respostas desses algoritmos. Para ilustrar sua aplicação, nós a utilizamos para avaliar as respostas de 16 algoritmos de rearranjo de genomas aproximados relativos a 6 variações do Problema da Ordenação por Rearranjo. Além da ferramenta, este trabalho traz outras contribuições. Desenvolvemos um algoritmo exato para calcular distâncias de rearranjo que é mais eficiente em termos de uso de memória do que qualquer outro algoritmo que encontramos na literatura. Apresentamos conjecturas que dizem respeito à forma como as distâncias de rearranjo se distribuem. Validamos conjecturas referentes ao diâmetro, que é o maior valor alcançável pela distância de rearranjo entre uma permutação qualquer e a identidade considerando-se todas as permutações com o mesmo número de elementos. Apresentamos demonstrações formais para o fator de aproximação de alguns dos algoritmos avaliados. Por fim, mostramos que os fatores de aproximação de 7 dos 16 algoritmos avaliados não podem ser melhorados, o que contradiz algumas hipóteses levantadas na literatura, e conjecturamos que os fatores de aproximação de outros 6 algoritmos também não possam / Abstract: During evolution, global mutations may modify the gene order in a genome and such mutations are called rearrangement events. In Genome Rearrangements, we estimate the evolutionary distance between two genomes by computing the rearrangement distance between them, which is the length of the shortest sequence of rearrangement events that transforms one genome into the other. Representing genomes as permutations, in which genes appear as elements, the rearrangement distance can be obtained by solving the combinatorial problem of sorting a permutation using a minimum number of rearrangement events. This problem is referred to as Rearrangement Sorting Problem and varies accordingly to the types of rearrangement events considered. In this dissertation, we focus on two types of rearrangement events: reversals and transpositions. Variants of Rearrangement Sorting Problem involving these events have been shown to be difficult to solve optimally, therefore most of the proposed algorithms - which we denominate generically as genome rearrangement algorithms - are approximations, which have been the expected direction to follow. For this reason, we developed a tool that evaluates the results of these algorithms. To illustrate its application, we used it to evaluate the results of 16 genome rearrangement algorithms regarding 6 variants of Rearrangement Sorting Problem. Besides this tool, we developed an exact algorithm for computing rearrangement distances that is more efficient in terms of memory than any algorithm we have found in literature. Additionally, we presented conjectures on how the rearrangement distance are distributed and validated them regarding their diameter, which is the greatest value that the rearrangement distance between a permutation and the identity can reach considering all permutations with the same number of elements. Moreover, we presented formal proofs on the approximation ratio of some of the evaluated algorithms and showed that the approximation ratio of 7 out of the 16 evaluated algorithms cannot be improved, which contradicts some hypothesis raised in literature. Lastly, we conjectured that the approximation ratio of another 6 algorithms also cannot be improved / Mestrado / Ciência da Computação / Mestre em Ciência da Computação

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/275676
Date21 August 2018
CreatorsGalvão, Gustavo Rodrigues, 1988-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Dias, Zanoni, 1975-, Walter, Maria Emilia Machado Telles, Meidanis, João
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format124 p. : il., application/octet-stream
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds