Return to search

Calibration of an active vision system and feature tracking based on 8-point projective invariants.

by Chen Zhi-Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references. / List of Symbols S --- p.1 / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Active Vision Paradigm and Calibration of Active Vision System --- p.1.1 / Chapter 1.1.1 --- Active Vision Paradigm --- p.1.1 / Chapter 1.1.2 --- A Review of the Existing Active Vision Systems --- p.1.1 / Chapter 1.1.3 --- A Brief Introduction to Our Active Vision System --- p.1.2 / Chapter 1.1.4 --- The Stages of Calibrating an Active Vision System --- p.1.3 / Chapter 1.2 --- Projective Invariants and Their Applications to Feature Tracking --- p.1.4 / Chapter 1.3 --- Thesis Overview --- p.1.4 / References --- p.1.5 / Chapter Chapter 2 --- Calibration for an Active Vision System: Camera Calibration / Chapter 2.1 --- An Overview of Camera Calibration --- p.2.1 / Chapter 2.2 --- Tsai's RAC Based Camera Calibration Method --- p.2.5 / Chapter 2.2.1 --- The Pinhole Camera Model with Radial Distortion --- p.2.7 / Chapter 2.2.2 --- Calibrating a Camera Using Mono view Noncoplanar Points --- p.2.10 / Chapter 2.3 --- Reg Willson's Implementation of R. Y. Tsai's RAC Based Camera Calibration Algorithm --- p.2.15 / Chapter 2.4 --- Experimental Setup and Procedures --- p.2.20 / Chapter 2.5 --- Experimental Results --- p.2.23 / Chapter 2.6 --- Conclusion --- p.2.28 / References --- p.2.29 / Chapter Chapter 3 --- Calibration for an Active Vision System: Head-Eye Calibration / Chapter 3.1 --- Why Head-Eye Calibration --- p.3.1 / Chapter 3.2 --- Review of the Existing Head-Eye Calibration Algorithms --- p.3.1 / Chapter 3.2.1 --- Category I Classic Approaches --- p.3.1 / Chapter 3.2.2 --- Category II Self-Calibration Techniques --- p.3.2 / Chapter 3.3 --- R.Tsai's Approach for Hand-Eye (Head-Eye) Calibration --- p.3.3 / Chapter 3.3.1 --- Introduction --- p.3.3 / Chapter 3.3.2 --- Definitions of Coordinate Frames and Homogeoeous Transformation Matrices --- p.3.3 / Chapter 3.3.3 --- Formulation of the Head-Eye Calibration Problem --- p.3.6 / Chapter 3.3.4 --- Using Principal Vector to Represent Rotation Transformation Matrix --- p.3.7 / Chapter 3.3.5 --- Calculating R cg and Tcg --- p.3.9 / Chapter 3.4 --- Our Local Implementation of Tsai's Head Eye Calibration Algorithm --- p.3.14 / Chapter 3.4.1 --- Using Denavit - Hartternberg's Approach to Establish a Body-Attached Coordinate Frame for Each Link of the Manipulator --- p.3.16 / Chapter 3.5 --- Function of Procedures and Formats of Data Files --- p.3.23 / Chapter 3.6 --- Experimental Results --- p.3.26 / Chapter 3.7 --- Discussion --- p.3.45 / Chapter 3.8 --- Conclusion --- p.3.46 / References --- p.3.47 / Appendix I Procedures --- p.3.48 / Chapter Chapter 4 --- A New Tracking Method for Shape from Motion Using an Active Vision System / Chapter 4.1 --- Introduction --- p.4.1 / Chapter 4.2 --- A New Tracking Method --- p.4.1 / Chapter 4.2.1 --- Our approach --- p.4.1 / Chapter 4.2.2 --- Using an Active Vision System to Track the Projective Basis Across Image Sequence --- p.4.2 / Chapter 4.2.3 --- Using Projective Invariants to Track the Remaining Feature Points --- p.4.2 / Chapter 4.3 --- Using Factorisation Method to Recover Shape from Motion --- p.4.11 / Chapter 4.4 --- Discussion and Future Research --- p.4.31 / References --- p.4.32 / Chapter Chapter 5 --- Experiments on Feature Tracking with 3D Projective Invariants / Chapter 5.1 --- 8-point Projective Invariant --- p.5.1 / Chapter 5.2 --- Projective Invariant Based Tranfer between Distinct Views of a 3-D Scene --- p.5.4 / Chapter 5.3 --- Transfer Experiments on the Image Sequence of an Calibration Block --- p.5.6 / Chapter 5.3.1 --- Experiment 1. Real Image Sequence 1 of a Camera Calibration Block --- p.5.6 / Chapter 5.3.2 --- Experiment 2. Real Image Sequence 2 of a Camera Calibration Block --- p.5.15 / Chapter 5.3.3 --- Experiment 3. Real Image Sequence 3 of a Camera Calibration Block --- p.5.22 / Chapter 5.3.4 --- Experiment 4. Synthetic Image Sequence of a Camera Calibration Block --- p.5.27 / Chapter 5.3.5 --- Discussions on the Experimental Results --- p.5.32 / Chapter 5.4 --- Transfer Experiments on the Image Sequence of a Human Face Model --- p.5.33 / References --- p.5.44 / Chapter Chapter 6 --- Conclusions and Future Researches / Chapter 6.1 --- Contributions and Conclusions --- p.6.1 / Chapter 6.2 --- Future Researches --- p.6.1 / Bibliography --- p.B.1

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322702
Date January 1997
ContributorsChen, Zhiyi., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 1 v. (various pagings) : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0016 seconds