Interconnection Networks of various designs have been proposed for use as fast packet switches for broadband ISDN applications. We use stochastic activity networks to model and simulate these designs. In particular, we use stochastic activity networks to compare three switch designs (basic banyan, modified delta, and a design with multiplexer and demultiplexer) under both uniform and non-uniform workload assumptions. Regarding contention resolution, we consider two policies, one with blocking, and one where the packet is rejected and must be retransmitted. For each scenario, we determine blocking probability and mean transmission delay. We find that while traditional designs work well with uniform workloads, they do not work so well with non-uniform workloads, and in fact, the simpler design with multiplexer and demultiplexer works better in some reject-retransmission cases. The modified delta network, due to its multiple path, performs the best among the three designs with uniform workloads. (Abstract shortened with permission of author.)
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/277322 |
Date | January 1990 |
Creators | Lin, Cheng-Leo George, 1958- |
Contributors | Sanders, William H. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0013 seconds