Return to search

MAnanA: A Generalized Heuristic Scoring Approach for Concept Map Analysis as Applied to Cybersecurity Education

Concept Maps (CMs) are considered a well-known pedagogy technique in creating curriculum, educating, teaching, and learning. Determining comprehension of concepts result from comparisons of candidate CMs against a master CM, and evaluate "goodness". Past techniques for comparing CMs have revolved around the creation of a subjective rubric. We propose a novel CM scoring scheme called MAnanA based on a Fuzzy Similarity Scaling (FSS) score to vastly remove the subjectivity of the rubrics in the process of grading a CM. We evaluate our framework against a predefined rubric and test it with CM data collected from the Introduction to Computer Security course at the University of New Orleans (UNO), and found that the scores obtained via MAnanA captured the trend that we observed from the rubric via peak matching. Based on our evaluation, we believe that our framework can be used to objectify CM analysis.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3676
Date06 August 2018
CreatorsBlake Gatto, Sharon Elizabeth
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations
Rightshttp://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0017 seconds