The advances in technology for creation, storage and dissemination of data have dramatically increased the need for tools that effectively provide users with means of identifying and understanding relevant information. Despite the great computing opportunities distributed frameworks such as Hadoop provide, it has only increased the need for means of identifying and understanding relevant information. Formal Concept Analysis (FCA) may play an important role in this context, by employing more intelligent means in the analysis process. FCA provides an intuitive understanding of generalization and specialization relationships among objects and their attributes in a structure known as a concept lattice. The present thesis addresses the problem of mining and visualising concepts over a data stream. The proposed approach is comprised of several distributed components that carry the computation of concepts from a basic transaction, filter and transforms data, stores and provides analytic features to visually explore data. The novelty of our work consists of: (i) a distributed processing and analysis architecture for mining concepts in real-time; (ii) the combination of FCA with visual analytics visualisation and exploration techniques, including association rules analytics; (iii) new algorithms for condensing and filtering conceptual data and (iv) a system that implements all proposed techniques, called Cubix, and its use cases in Biology, Complex System Design and Space Applications.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00966184 |
Date | 19 July 2013 |
Creators | De Alburquerque Melo, Cassio |
Publisher | Ecole Centrale Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds