Cette thèse discute le problème de test de production en grand volume des circuits radio-fréquences (RF) et à ondes millimétriques (mm-wave). Le test des fonctionnalités RF et à ondes millimétriques est très onéreux. Le test intégré est une alternative prometteuse pour faciliter la procédure et réduire les couts, mais il est difficile à mettre en œuvre car il ne faut en aucun cas qu'il réduit la performance du circuit sous test (CUT). Dans cette thèse, nous étudions une technique du test intégré qui repose sur l'utilisation de capteurs non-intrusifs qui prend en compte la variabilité du procédé de fabrication. Cette technique est extrêmement intéressante pour les concepteurs des circuits RF et mm-wave car il leur permet de dissocier le test de la conception. Les capteurs non-intrusifs sont constitués d'étages analogiques triviaux et de composants simples qui sont copiés de la topologie du CUT et sont placés sur la puce à proximité du CUT. Ils offrent simplement une "image" des variations du procédé de fabrication, ce qui leur permet de suivre les variations de performance du CUT. En substance, cette technique tire parti des phénomènes non désirés de variabilité de procédé de fabrication. Le paradigme du test alternatif est utilisé pour estimer les performances du CUT à partir des mesures des capteurs non intrusifs, afin de remplacer les tests standards qui mesurent les performances directement. Ce principe de test est appliqué à deux différents CUTs, nommément un amplificateur à bas bruit à 2.4GHz réalisé en CMOS 65nm et un amplificateur à bas bruit large bande à 60GHz réalisé en CMOS 65nm. Nous démontrons qu'en ajoutant quelques capteurs non-intrusifs sur la puce, qui n'engendrent pratiquement pas de surcout de surface, et en obtenant de ces capteurs non-intrusifs certaines mesures dans le domaine continu et à basse fréquence, nous sommes capable de suivre les variations de toutes les performances du CUT avec une erreur de prédiction moyenne inférieure à l’écart-type de la performance, et une erreur de prédiction maximum qui est inférieure ou au moins comparable aux erreurs de mesure dans un équipement de test automatisé conventionnel. / This thesis addresses the high-volume production test problem for RF and millimeter-wave (mm-wave) circuits. Testing the RF/mm-wave functions of systems-on-chip (SoCs) incurs a very high cost. Built-in test is a promising alternative to facilitate testing and reduce costs, but it is challenging since it should by no means degrade the performance of the Circuit Under Test (CUT). In this work, we study a built-in test technique which is based on non-intrusive variation-aware sensors. The non-intrusive property is very appealing for designers since the sensors are totally transparent to the design and, thereby, the test is completely dissociated from the design. The non-intrusive sensors are dummy analog stages and single layout components that are copied from the topology of the CUT and are placed on the die in close physical proximity to the CUT. They simply offer an “image” of process variations and by virtue of this they are capable of tracking variations in the performances of the CUT. In essence, the technique capitalizes on the undesired phenomenon of process variations. The alternate test paradigm is employed to map the outputs of the non-intrusive sensors to the performances of the CUT, in order to replace the standard tests for measuring the performances directly. The proposed test idea is applied to two different CUTs, namely a 2.4GHz CMOS 65nm inductive degenerated Low-Noise Amplifier (LNA) and a wide-band mm-wave 60GHz CMOS 65nm 3-stage LNA. We demonstrate that by adding on-chip a few non-intrusive sensors of practically zero area-overhead and by obtaining on these non-intrusive sensors DC or low-frequency measurements, we are able to track variations in all performances of the CUT with an average prediction error lower than one standard deviation of the performance and a maximum prediction error that is lower or at least comparable to the measurement and repeatability errors in a conventional Automatic Test Equipment (ATE) environment.
Identifer | oai:union.ndltd.org:theses.fr/2016GREAT019 |
Date | 29 March 2016 |
Creators | Dimakos, Athanasios |
Contributors | Grenoble Alpes, Stratigopoulos, Haralampos-G., Mir, Salvador |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds