Return to search

Assessing the influence of crack width on the durability potential of cracked concrete using the durability index approach

Durability is a major concern for reinforced concrete (RC) structures. RC structures both in service and new, are subject to cracking. Irrespective of the cause of the cracking, cracks can increase the rate of penetration of aggressive species into concrete and modify the transport properties. Consequently, the service life of corrosionaffected RC structures may be drastically reduced in the presence of cracks. However, no modifications are made for the influence of cracking on the penetration of aggressive species into concrete when analysing durability test results or making service life predictions, even through concrete is very often in a cracked state. This study focused on the influence of cracks on the ingress of aggressive species (carbon dioxide and chlorides) into cracked concrete in comparison to uncracked concrete. The aim was to establish any correlations between the transport properties in uncracked and cracked concrete. Furthermore, in a broader context, the aim was to assess to what extent the modified cracked concrete parameters used in service life predictions affect the service life outputs, when compared with service life outputs obtained using the uncracked concrete parameters. Six concretes mixes were investigated comprising two water/binder (w/b) ratios (0.40 and 0.55) and three binder types (100% CEM I 52.5N (PC), 70/30 PC/FA and 50/50 PC/GGBS). 100 x 100 x 500 mm beams were cast and cracks were induced after seven days in the mid-span of each beam using three-point loading. Two crack width ranges were investigated; 0.1-0.4 mm (wcr1) and 0.5-0.8 mm (wcr2). The central section of the beam that contained the crack was sawn from the rest of the beam and used for either accelerated carbonation or bulk chloride diffusion testing. Cores were drilled from the outer sections of the beam and used as specimens for the Durability Index tests. The cracked specimens were monitored for carbonation (accelerated carbonation) and chloride ingress (bulk diffusion), while the uncracked ones were monitored for durability parameters (OPI, WSI & CCI) after 8 and 16 weeks of exposure. Firstly, it can be concluded that the presence of cracks modifies the transport properties of concrete by promoting rapid increase of ingress of aggressive species (CO₂ & Cl-) into the concrete matrix. It was found that the degree to which the transport properties were modified increased as the crack width increased. This was primarily attributed to the increase in surface area created by the crack, which allowed increased amounts of species (CO₂ & Cl-) to penetrate into the concrete matrix. In the case of carbon dioxide ingress, the presence of cracks significantly increased the rate of carbonation (up to 50 %) in the concrete specimens that contained blended cements PC/FA and PC/GGBS when compared to the PC concrete specimens. However, in the case of chloride ingress the effects of cracks in the PC mix resulted in the highest presence of chlorides (up to 78 %) in the concrete specimens in comparison to the chlorides present in the PC/FA and PC/GGBS concrete specimens. Secondly, when the sound (DI) and cracked durability parameters (carbonation and diffusion coefficient) where used in carbonation and chloride ingress service predictions, it was found that the DI service life prediction outputs were more conservative in relation to service life outputs from the durability parameters obtained from cracked concrete specimens. These results highlighted the degree of influence which the presence of cracks had on modifying transport properties in concrete. Furthermore, it also highlights the impact of the presence of cracks on the service life of RC structures and the prediction of long-term carbonation- and chloride- induced corrosion. Due to the significant influence that cracks have on modifying the transport properties of concrete, the results show that some reduction factors need to be applied to the results from the DI approach to reflect a more realistic durability potential of the concrete. Further research into understanding how other crack parameters (crack depth, frequency etc.) modify transport properties in concrete will lead to a more accurate insight into dealing with and accounting for the presence of cracks in RC structures.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/24308
Date January 2015
CreatorsKanjee, Janina Prakash
ContributorsBeushausen, Hans-Dieter, Alexander, Mark Gavin, Otieno, Mike Benjamin
PublisherUniversity of Cape Town, Faculty of Engineering and the Built Environment, Concrete Materials and Structural Integrity Research Unit (CoMSIRU)
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc (Eng)
Formatapplication/pdf

Page generated in 0.0024 seconds