Return to search

Mechanical properties of fly ash/slag based geopolymer concrete with the addition of macro fibres

Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Geopolymer concrete is an alternative construction material that has comparable mechanical
properties to that of ordinary Portland cement concrete, consisting of an aluminosilicate and
an alkali solution. Fly ash based geopolymer concrete hardens through a process called
geopolymerisation. This hardening process requires heat activation of temperatures above
ambient. Thus, fly ash based geopolymer concrete will be an inadequate construction material
for in-situ casting, as heat curing will be uneconomical.
The study investigated fly ash/slag based geopolymer concrete. When slag is added to the
matrix, curing at ambient temperatures is possible due to calcium silicate hydrates that form
in conjunction with the geopolymeric gel.
The main goal of the study is to obtain a better understanding of the mechanical properties of
geopolymer concrete, cured at ambient temperatures. A significant number of mix variations
were carried out to investigate the influence that the various parameters, present in the matrix,
have on the compressive strength of fly ash/slag based geopolymer concrete. Promising
results were found, as strengths as high as 72 MPa were obtained. The sodium hydroxide
solution, the slag content and the amount of additional water in the matrix had the biggest
influence on the compressive strength of the fly ash/slag based geopolymer concrete.
The modulus of the elasticity of fly ash/slag based geopolymer concrete did not yield
promising results as the majority of the specimens, regardless of the compressive strength,
yielded a stiffness of less than 20 GPa. This is problematic from a structural point of view as
this will result in large deflections of elements. The sodium hydroxide solution had the most
significant influence on the elastic modulus of the geopolymer concrete. Steel and polypropylene fibres were added to a high- and low strength geopolymer concrete
matrix to investigate the ductility improvement. The limit of proportionality mainly depended
on the compressive strength of the geopolymer concrete, while the amount of fibres increased
the energy absorption of the concrete. A similar strength OPC concrete mix was compared to
the low strength geopolymer concrete and it was found that the OPC concrete specimen
yielded slightly better flexural behaviour. Fibre pull-out tests were also conducted to
investigate the fibre-matrix interface. From the knowledge gained during this study, it can be concluded that the use of fly ash/slag
based geopolymer concrete, as an alternative binder material, is still some time away as there
are many complications that need to be dealt with, especially the low modulus of elasticity.
However, fly ash/slag based geopolymer concrete does have potential if these complications
can be addressed. / AFRIKAANSE OPSOMMING: Geopolimeerbeton is ‘n alternatiewe konstruksiemateriaal wat vergelykbare meganiese eienskappe
met beton waar OPC die binder is, en wat bestaan uit ‘n aluminosilikaat en ‘n alkaliese oplossing.
Vliegas-gebaseerde geopolimeerbeton verhard tydens ‘n proses wat geopolimerisasie genoem word.
Hierdie verhardingsproses benodig hitte-aktivering van temperature hoër as dié van die onmiddellike
omgewing. Gevolglik sal vliegas-gebaseerde geopolimeerbeton ‘n ontoereikende konstruksiemateriaal
vir in situ gietvorming wees, aangesien hitte-nabehandeling onekonomies sal wees.
Die studie het vliegas/slagmentgebaseerde geopolimeerbeton ondersoek. Wanneer slagment by die
bindmiddel gevoeg word, is nabehandeling by omliggende temperature moontlik as gevolg van
kalsiumsilikaathidroksiede wat in verbinding met die geopolimeriese jel vorm.
Die hoofdoel van die studie was om ‘n beter begrip te kry van die meganiese eienskappe van
geopolimeerbeton, wat nabehandeling by omliggende temperature ontvang het. ‘n Aansienlike aantal
meng variasies is uitgevoer om die invloed te ondersoek wat die verskeie parameters, aanwesig in die
bindmiddel, op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton het. Belowende
resultate is verkry en sterktes van tot so hoog as 72 MPa is opgelewer. Daar is gevind dat die
sodiumhidroksiedoplossing, die slagmentinhoud en die hoeveelheid water in die bindmiddel die
grootste invloed op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton gehad het.
Die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton het nie belowende resultate
opgelewer nie. Die meeste van die monsters, ongeag die druksterkte, het ‘n styfheid van minder as 20
GPa opgelewer. Vanuit ‘n strukturele oogpunt is dit problematies, omdat groot defleksies in elemente
sal voorkom. Die sodiumhidroksiedoplossing het die grootste invloed op die styfheid van die
vliegas/slagmentgebaseerde geopolimeerbeton gehad. Staal en polipropileenvesels is by ‘n hoë en lae sterke geopolimeer beton gevoeg om die buigbaarheid
te ondersoek. Die die maksimum buigbaarheid het hoofsaaklik afgehang van die beton se druksterkte
terwyl die hoeveelheid vesels die beton se energie-opname verhoog het. ‘n OPC beton mengsel van
soortgelyke sterkte is vergelyk met die lae sterkte geopolimeerbeton en daar is gevind dat die OPC
beton ietwat beter buigbaarheid opgelewer het. Veseluittrektoetse is uitgevoer om die veselbindmiddel
se skeidingsvlak te ondersoek.
Daar kan tot die gevolgtrekking gekom word dat, alhoewel belowende resultate verkry is, daar steeds
sommige aspekte is wat ondersoek en verbeter moet word, in besonder die styfheid, voordat
geopolimeerbeton as ‘n alternatiewe bindmiddel kan optree. Volgens die kennis opgedoen tydens hierdie studie, kan dit afgelei word dat die gebruik van
vliegas/slagmentgebaseerde geopolimeerbeton, as 'n alternatiewe bindmiddel, nog 'n geruime tyd weg
is, as gevolg van baie komplikasies wat gehandel moet word, veral die lae elastisiteitsmodulus. Tog
het vliegas/slagmentgebaseerde geopolimeerbeton potensiaal as hierdie komplikasies verbeter kan
word.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/95866
Date12 1900
CreatorsRyno, Barnard
ContributorsBoshoff, William Peter, Stellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.
PublisherStellenbosch : Stellenbosch University
Source SetsSouth African National ETD Portal
Languageen_ZA
Detected LanguageUnknown
TypeThesis
Formatxvii, 164 p. : ill.
RightsStellenbosch University

Page generated in 0.0033 seconds