A packed condenser and the auxiliary equipment were designed, built and tested for the condensation of steam in direct contact with Aroclor 1242 and 1248, which are commercial heat transfer agents and are immiscible with water. The co-current flow of steam and liquid, through a four inch inside diameter column packed with three-eighth inch ceramic Raschig rings, was studied. The packing heights used in the condensation of steam were estimated from the liquid temperature profile in the column. The heights of the transfer units for condensation and the average volumetric overall heat transfer coefficients were calculated. The height of the transfer unit for condensation was found to be affected largely by the mean viscosity and the flow rate of the liquid. Two empirical equations have been developed to describe the results of this study.
HCU = F ( μ ) (n) where n = 1. 10 for Aroclor 1242 and n = 1. 16 for Aroclor 1248 is mean viscosity of the Aroclor in centipoise.
For Aroclor 1242, F= 0.0535 + 8.90 x l0⁻⁶ L when L ≤ 2290 and F =-0. 0737 + 6. 44 x 10⁻⁵ L when L > 2290. For Aroclor 1248, F = 0. 02765 + 1. 244 x 10⁻⁵ L.
L is superficial mass velocity of the Aroclor in lb /hr. ft² / Applied Science, Faculty of / Chemical and Biological Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/37840 |
Date | January 1966 |
Creators | Rai, Virendra Chandra |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0015 seconds