Return to search

Um problema inverso de identificação do coeficiente de condutividade da equação do calor envolvendo regiões não simplesmente conexas / Um problema inverso de identificação do coeficiente de condutividade da equação do calor envolvendo regiões não simplesmente conexas

No trabalho foi provada a unicidade da recuperação do coeficiente de condutividade da equação do calor, que por hipótese tem suporte compacto, quando o dado é a distribuíção da temperatura em abertos não simplesmente conexos. / Analisamos o problema inverso da identificação do coeficiente de condutividade $1 + ho$ da equação do calor. Provamos um resultado de unicidade para uma versão linearizada desse problema em $R^n$, para $n$ ímpar, que não depende da hipótese sobre a posição relativa entre o suporte, assumido compacto, da função desconhecida $ho$ e um aberto limitado $\\Omega^$, onde as medidas de temperatura são efetuadas. Provamos o caso em que $\\supp(ho)$ pode ser não simplesmente conexo, e que $\\Omega^$ pode pertencer à uma de suas componentes limitadas. Trata-se de uma extensão, para $n$ ímpar, de um teorema provado por Elayyan e Isakov.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-29062007-102421
Date13 April 2007
CreatorsAlexandre Kawano
ContributorsPaulo Domingos Cordaro, Antonio Carlos Gardel Leitão, Raul Gonzalez Lima, Gerson Petronilho, Clodoaldo Grotta Ragazzo
PublisherUniversidade de São Paulo, Matemática Aplicada, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0099 seconds