Return to search

Microtubule involvement in the plant low temperature response

Cold acclimation is a complex process where plants acquire increased freezing tolerance following exposure to low, non-freezing temperatures. Microtubules are dynamic components of the cytoskeleton that are essential for plant growth and development, and there are multiple lines of evidence indicating microtubules are involved in the acquisition of freezing tolerance. <p>The organization of microtubules (MTs) was tracked over the course of a cold acclimation period using GFP:TUB6 and fluorescent imaging tools. Experiments found that MTs undergo incomplete, transient disassembly following exposure to acclimating temperatures, which is accompanied by intranuclear tubulin accumulation and followed by MT reassembly. The importance of the observed changes to MT organization was examined with MT disrupting chemicals that caused reduced MT dynamics or induced transient MT disassembly similar to that of cold acclimation. Results of these experiments suggest that MT reorganization is important for cold acclimation, but the disassembly and reassembly do not directly control cold acclimation.<p>MT binding proteins are likely to play a key role in the low temperature response because they control MT activity and organization, participate in low temperature signal transduction pathways, and mediate interactions between various elements of this pathway. By employing a number of proteomics techniques we were able to identify 96 tubulin-binding proteins from untreated and short term cold acclimated Arabidopsis plants. Proteins both known to and predicted to bind to MTs and unexpected MT binding proteins were identified. The identified tubulin binding proteins have a range of cellular functions, including RNA transport and protein translation, stress responses, and functions related to various metabolic pathways, and cell growth and organization. <p>Exposure to low temperatures affected the binding of some of these proteins to MTs with the identified tubulin binding proteins potentially involved in the cold acclimation process and stress response through a number of possible pathways.<p>This study represents the first live cell imaging of MT reorganization in response to low temperatures and the first time microtubule binding proteins from whole plant protein extracts were identified using 1D gel LC-MS/MS analysis.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-07072008-161927
Date09 July 2008
CreatorsSproule, Kerry Ann
ContributorsFowke, Larry C., Fobert, Pierre R., Bonham-Smith, Peta C., Parkin, Isobel A. P.
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-07072008-161927/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0134 seconds