Return to search

Synthesis of structured phospholipids with conjugated linolenic acid, and evaluation of their physical properties

Structured phospholipids with conjugated linolenic acid were produced for potential applications in nutraceuticals and functional foods. Structured phospholipids were synthesized with conjugated linolenic acid (CLnA) from natural sources by catalytic enzymatic reaction. Pomegranate seed oil, as a natural source of CLnA, and an isomerized-concentrated mixture (ICM) of CLnA from flaxseed oil were used for the enzymatic reaction with phosphotidylcholine (PC) using Liposyme TL IM for fatty acid modification at 57 °C for 96 h. The enzymatic process was an effective way to produce structured phospholipids with CLnA. The maximum incorporation of CLnA from pomegranate seed oil and ICM from flaxseed oil into PC was 11.3% and 4.9% after 72 h, respectively. Structured lysophospholipids were also obtained as a result of the enzymatic reaction. The maximum incorporation of CLnA from pomegranate oil and ICM from flaxseed oil into lysophospholipids was 17.2% and 13.5% after 72h, respectively. Physical properties such as dropping point and viscosity at 40 and 50 °C of the structured phospholipids produced were measured when they were added to a chocolate mixture (unsweetened chocolate 94.6%, coconut oil 5% and 0.4 % phospholipids). Two controls were used for comparison: the chocolate mixture without phospholipids and the chocolate mixture with Lipoid S100 (phosphatidylcholine 94%). Structured phospholipids with CLnA showed lower dropping point and viscosities than the controls. Oil-in-water emulsions were prepared with whey protein (1%), soy bean oil (10%) and phospholipids (0.5%) in a high pressure homogenizer at 20MPa. The emulsion stability of the emulsions prepared, control (without phospholipids), Lipoid S 100 and structured phospholipids with CLnA were determined by visual observation of phase separation. The structured phospholipids emulsion showed higher emulsion stability than the controls. This emulsion was stable up to 108 h while the emulsion without phospholipid and Lipoid S100 were 48 h and 96 h stable, respectively. Oxidative stability of the emulsions prepared was determined by measuring the peroxide value and p-anisidine value after 1, 3 and 7 days at 50 °C. Oil was extracted from the emulsions using isooctane:isopropanol (3:2 v/v). The structured phospholipid emulsions showed lower oxidative stability than the controls.

Identiferoai:union.ndltd.org:TEXASAandM/oai:repository.tamu.edu:1969.1/ETD-TAMU-1512
Date15 May 2009
CreatorsQuezada Arboleda, Nathalie
ContributorsHernandez, Ernesto, Rooney, Lloyd, Cisneros, Luis, Murano, Peter
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0015 seconds