Return to search

Directing the paracrine actions of adipose stem cells for cartilage regeneration

Current cartilage repair methods are ineffective in restoring the mechanical and biological functions of native hyaline cartilage. Therefore, using the paracrine actions of stem cell therapies to stimulate endogenous cartilage regeneration has gained momentum. Adipose stem cells (ASCs) are an attractive option for this endeavor because of their accessibility, chondrogenic potential, and secretion of factors that promote connective tissue repair. In order to use the factors secreted by ASCs to stimulate cartilage regeneration, the signaling pathways that affect postnatal cartilage development and morphology need to be understood. Next, approaches need to be developed to tailor the secretory profile of ASCs to promote cartilage regeneration. Finally, delivery methods that localize ASCs within a defect site while facilitating paracrine factor secretion need to be optimized.
The overall objective of this thesis was to develop an ASC therapy that could be effectively delivered in cartilage defects and stimulate regeneration via its paracrine actions. The general hypothesis was that the secretory profile of ASCs can be tailored to enhance cartilage regeneration and be effectively delivered to regenerate cartilage in vivo. The overall approach used the growth plate as an initial model to study changes in postnatal cartilage morphology and the molecular mechanisms that regulate it, different media treatments and microencapsulation to tailor growth factor production, and alginate microbeads to deliver ASCs in vivo to repair cartilage focal defects.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/44713
Date04 May 2012
CreatorsLee, Christopher S. D.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0016 seconds