Return to search

A phenomenological model for dynamic recrystallization

The present study develops a phenomenological adaptation to an internal state variable (ISV) model that incorporates the influence of dynamic recrystallization (DRX) in a material’s evolving microstructure and flow stress response. During metal forming and joining processes that promote internal heat distributions and large strains, microstructural processes often occur that result in a transformation of the evolving microstructure away from the base distribution. In an effort to lower the stored energy accumulated in the material’s lattice and grain structure, the deformed material may undergo a type of dynamic recovery process, such as DRX. In this study, the ISV model’s flow stress output is modified to include a phenomenological DRX softening and hardening term internal to the isotropic hardening rate ISV. The flow stress thus directly includes the influence of microstructure evolution. The evolving grain size is modeled such that an inverse relation exists between strain hardening and average grain size.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-1225
Date30 April 2011
CreatorsSimmons, Jason Mark
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0025 seconds