Return to search

Ultimate load limit analysis of steel structures accounting for nonlinear behaviour of connections / Analyse limite ultime des structures en acier en prenant en compte le comportement non linéaire des connexions

Cette thèse traite de l'analyse limite des structures de châssis en acier, qui s'utilise souvent comme la structure principale de support des bâtiments. La structure du cadre en acier est caractérisée par une réponse très ductile et un grand potentiel pour dissiper l'énergie, ce qui est crucial pour la résistance par rapport aux tremblements de terre. La ductilité dans la réponse de la structure est la cause du comportement du matériau lui-même et du comportement des connexions entre les éléments de la structure. Les connexions entre les poutres et les poteaux peuvent influencer de manière significative la réponse de la structure du cadre en acier, parfois jusqu'à 30%. L'idée est de intégrer le comportement des connexions par les éléments de poutres qui seront situés dans les coins du cadre et la modélisation du reste serra fait avec des éléments de poutres non-linéaires qui décrirons le comportement des poutres en acier. Cette recherche est composée de deux parties. La première partie est consacrée au comportement des connexions structurelles, la deuxième partie présente le développement de l'élément fini du faisceau non linéaire capable de représenter le comportement ductile d'un élément de la structure en acier. Dans la première partie de la thèse, nous définissons la procédure d'identification des paramètres constitutifs pour le modèle couplé de plasticité-dégâts avec dix-huit inconnus. Ce modèle constitutif est très robuste et capable de représenter une large gamme de problèmes. La procédure définie a été utilisée dans la préparation de tests expérimentaux pour trois types de connexions en acier structuré. Les tests expérimentaux ont été effectués pour deux cas de charge. Pour la première, la charge a été appliquée dans un sens avec les cycles de chargement et de déchargement. À partir des mesures expérimentales, nous avons conclu que le modèle de plasticité peut bien représentée le comportement de la connexion structurale. Paramètres constitutifs ont été déterminés à partir des résultats de l'expérimentation, on a utilisé une poutre géométriquement exacte avec la loi bilinéaires renforcement du matériel et la loi linéaire pour le ramollissement. Également, on a effectué des essais expérimentaux de deux types de raccords en acier en cas de chargement cyclique. Les données mesurées montrent que le modèle de la plasticité n'est pas assez bon pour décrire le comportement de connexion pour ce type de charge. A savoir, en raison de changements du sens de l'application du chargement, les connexions montrent moins de rigidité, qui peut être décrite avec un modèle constitutif de dommages. Pour cette raison, nous avons développé un nouveau modèle plasticité-dommages qui est capable d'inclure le phénomène mentionné ci-dessus. A la fin de cette section est faite l'identification des paramètres constitutifs. La deuxième partie de la thèse de doctorat est composé de formulations théoriques et la mise en œuvre numérique des faisceaux géométriquement exacte. La réponse de durcissement de la poutre comprend l'interaction entre les forces de la section résultant du stress (N, T et M), et la réponse de ramollissement est définit par la loi non linéaire. Ce type d'élément fini de poutre est capable de décrire le comportement ductile des structures en acier et inclure les effets du second ordre, qui sont très importantes pour l'analyse ultime des structures de cadre en acier. L'élément fini développé de poutre géométriquement exacte et les lois définies de liaison de comportement dans la construction en acier, offrant la possibilité d'une analyse de haute qualité des structures en acier. En utilisant les modèles de poutre proposé et la méthodologie de modélisation des structures de châssis en acier, il est possible de déterminer une distribution réaliste des forces de section transversale , y compris la redistribution due à la formation de rotules plastiques. / This thesis deals with the ultimate load limit analysis of steel frame structures. The steel frame structure has a very ductile response and a large potential to dissipate energy, which is crucial in the case of earthquakes. The ductility in the response of the structure comes from the behavior of the material itself and the behavior of the semi-rigid structural connections. The semi-rigid connections between beams and columns can significantly influence the response of the structure, sometimes up to 30%. In this thesis, we propose a methodology for modeling steel frame structures with included connection behavior. The idea is to model the behavior of the structural connections by the beam elements positioned in the corners of the steel frame structure. Other members of the steel frame structure, steel beams, and columns, will be modeled with nonlinear beam elements. This research consists of two parts. The first part deals with the behavior of the structural steel connections. In the second part, we present the development of the nonlinear beam element capable of representing the ductile behavior of steel structural elements, beams and columns. In the first part of the thesis, we define constitutive parameters identification procedure for the coupled plasticity-damage model with eighteen unknowns. This constitutive model is very robust and capable of representing a wide range of problems. The identification procedure was used in the preparation of experimental tests for three different types of structural steel connections. The experimental tests have been performed for two load cases. In the first, the load was applied in one direction with both the loading and unloading cycles. From the experimental measurements, we have concluded that the response of the experimental structure can be represented by the plasticity model only because no significant change in the elastic response throughout the loading program was observed. Therefore, we have chosen an elastoplastic geometrically exact beam to describe connection behavior. The hardening response of the beam is governed by bilinear law, and the softening response is governed by nonlinear exponential law. The identification of the parameters has been successfully done with fifteen unknown parameters identified. The two types of the experimental structures were also exposed to the cyclic loading. Measured experimental data shows complex connection behavior that cannot be described by the plasticity model alone. Namely, after changing load direction stiffness of the connection decreases. This suggests that the damage model should be incorporated in the constitutive law for the connections behavior as well. Therefore, we propose a new coupled plasticity-damage model capable of representing the loss in the stiffness of the connection with the changing of the load direction. At the end of this part, we also give the constitutive parameters identification for the proposed model. The second part of the thesis deals with the theoretical formulation and numerical implementation of the elastoplastic geometrically exact beam. The hardening response of the beam includes interaction between stress resultant section forces (N, T and M), and the softening response of the beam, which is governed by the nonlinear law. This type of the beam element is capable of representing the ductile behavior of a steel frame structure, and it takes into account second order theory effects. Performed numerical simulations show that the proposed geometrically nonlinear beam element is very robust and is able to provide a more precise limit load analysis of steel frame structures. By using proposed methodology for modeling steel structures, we are able to obtain the real distribution of section forces, including their redistribution caused by forming of the hinges and the connections behavior.

Identiferoai:union.ndltd.org:theses.fr/2017COMP2373
Date22 September 2017
CreatorsImamovic, Ismar
ContributorsCompiègne, Ibrahimbegovic, Adnan, Mesic, Esad
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0037 seconds