La Programmation par contraintes est un cadre général utilisé pour modéliser et résoudre des problèmes combinatoires complexes. Cependant, la modélisation d'un problème sous forme d’un réseau de contraintes nécessite une bonne expertise dans le domaine. Ce niveau d'expertise est un obstacle majeur pour une large diffusion de la programmation de contraintes. Pour remédier à ce problème, plusieurs systèmes d'acquisition de contraintes ont été proposés pour aider l'utilisateur dans la tâche de modélisation. Dans ces systèmes, l'utilisateur ne répond qu'à des questions très simples. L'inconvénient est que lorsqu'aucune connaissance de base n’est fournie, l'utilisateur peut avoir besoin de répondre à un grand nombre de questions pour apprendre toutes les contraintes. Dans cette thèse, nous montrons que l'utilisation de la structure du problème peut améliorer considérablement le processus d'acquisition. Pour ce faire, nous proposons plusieurs techniques. Tout d'abord, nous introduisons le concept de requête de généralisation basée sur une agrégation de variables sous forme detypes. Deuxièmement, pour faire face aux requêtes de généralisation, nous proposons un algorithme de généralisation de contraintes, nommé GENACQ, ainsi que plusieurs stratégies. Troisièmement, pour rendre la construction de requêtes de généralisation totalement indépendante de l'utilisateur, nous proposons l'algorithme MINE&ASK, qui est en mesure d'apprendre la structure au cours du processus d'acquisition de contraintes, et d'utiliser la structure apprise pour générer des requêtes de généralisation. Quatrièmement, pour aller vers un concept générique de requête, nous introduisons la requête de recommandation basée sur la prédiction de liens dans le graphe de contraintes apprises jusqu’à présent. Cinquièmement, nous proposons un algorithme de recommandation de contraintes, ppelé PREDICT&ASK, qui demande à l’utilisateur de classifier des requêtes de recommandation chaque fois que la structure du graphe courant a été modifiée. Enfin, nous intégrons toutes ces nouvelles techniques dans l’algorithme QUACQ, menant à trois nouvelles versions, à savoir G-QUACQ, M- QUACQ, et P-QUACQ. Pour évaluer toutes ces techniques, nous avons fait des expérimentations sur plusieurs jeux de données. Les résultats montrent que les versions étendues améliorent considérablement le QUACQ de base. / Constraint Programming is a general framework used to model and solve complex combinatorial problems.However, modeling a problem as a constraint network requires significant expertise in the field.Such level of expertise is a bottleneck to the broader uptake of the constraint technology.To alleviate this issue, several constraint acquisition systems have been proposed to assist thenon-expert user in the modeling task. Nevertheless, in these systems the user is only asked to answervery basic questions. The drawback is that when no background knowledge is provided,the user may need to answer a large number of such questions to learn all the constraints.In this thesis, we show that using the structure of the problem under consideration may improvethe acquisition process a lot. To this aim, we propose several techniques.Firstly, we introduce the concept of generalization query based on an aggregation of variables into types.Secondly, to deal with generalization queries, we propose a constraint generalization algorithm, named GENACQ, together with several strategies. Thirdly, to make the build of generalization queries totally independent of the user, we propose the algorithm MINE&ASK, which is able to learn the structure, during the constraint acquisition process, and to use the learned structure to generate generalization queries. Fourthly, toward a generic concept of query, we introduce the recommendation query based on the link prediction on the current constraint graph. Fifthly, we propose a constraint recommender algorithm, called PREDICT&ASK, that asks recommendation queries, each time the structure of the current graph has been modified. Finally, we incorporate all these new generic techniques into QUACQ algorithm leading to three boosted versions, G-QUACQ, M- QUACQ, and P-QUACQ. To evaluate all these techniques, we have made experiments on several benchmarks. The results show that the extended versions improve drastically the basic QUACQ.
Identifer | oai:union.ndltd.org:theses.fr/2016MONTT316 |
Date | 10 May 2016 |
Creators | Daoudi, Abderrazak |
Contributors | Montpellier, Université Mohamed V, Bessiere, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0069 seconds