La modélisation des systèmes dynamiques requiert la prise en compte d’incertitudes liées à l’existence inévitable de bruits (bruits de mesure, bruits sur la dynamique), à la méconnaissance de certains phénomènes perturbateurs mais également aux incertitudes sur la valeur des paramètres (spécification de tolérances, phénomène de vieillissement). Alors que certaines de ces incertitudes se prêtent bien à une modélisation de type statistique comme par exemple ! les bruits de mesure, d’autres se caractérisent mieux pa ! r des bornes, sans autre attribut. Dans ce travail de thèse, motivés par les observations ci-dessus, nous traitons le problème de l’intégration d’incertitudes statistiques et à erreurs bornées pour les systèmes linéaires à temps discret. Partant du filtre de Kalman Intervalle (noté IKF) développé dans [Chen 1997], nous proposons des améliorations significatives basées sur des techniques récentes de propagation de contraintes et d’inversion ensembliste qui, contrairement aux mécanismes mis en jeu par l’IKF, permettent d’obtenir un résultat garanti tout en contrôlant le pessimisme de l’analyse par intervalles. Cet algorithme est noté iIKF. Le filtre iIKF a la même structure récursive que le filtre de Kalman classique et délivre un encadrement de tous les estimés optimaux et des matrices de covariance possibles. L’algorithme IKF précédent évite quant à lui le problème de l’inversion des matrices intervalles, ce qui lui vaut de perdre des solutions possibles. Pour l’iIKF, nous proposons une méthode originale garantie pour l’inversion des matrices intervalle qui couple l’algorithme SIVIA (Set Inversion via Interval Analysis) et un ensemble de problèmes de propagation de contraintes. Par ailleurs, plusieurs mécanismes basés sur la propagation de contraintes sont également mis en œuvre pour limiter l’effet de surestimation due à la propagation d’intervalles dans la structure récursive du filtre. Un algorithme de détection de défauts basé sur iIKF est proposé en mettant en œuvre une stratégie de boucle semi-fermée qui permet de ne pas réalimenter le filtre avec des mesures corrompues par le défaut dès que celui-ci est détecté. A travers différents exemples, les avantages du filtre iIKF sont exposés et l’efficacité de l’algorithme de détection de défauts est démontré. / In this thesis, a new approach to estimation problems under the presence of bounded uncertain parameters and statistical noise has been presented. The objective is to use the uncertainty model which appears as the most appropriate for every kind of uncertainty. This leads to the need to consider uncertain stochastic systems and to study how the two types of uncertainty combine : statistical noise is modeled as the centered gaussian variable and the unknown but bounded parameters are approximated by intervals. This results in an estimation problem that demands the development of mixed filters and a set-theoretic strategy. The attention is drawn on set inversion problems and constraint satisfaction problems. The former is the foundation of a method for solving interval equations, and the latter can significantly improve the speed of interval based arithmetic and algorithms. An important contribution of this work consists in proposing an interval matrix inversion method which couples the algorithm SIVIA with the construction of a list of constraint propagation problems. The system model is formalized as an uncertain stochastic system. Starting with the interval Kalman filtering algorithm proposed in [Chen 1997] and that we name the IKF, an improved interval Kalman filtering algorithm (iIKF) is proposed. This algorithm is based on interval conditional expectation for interval linear systems. The iIKF has the same structure as the conventional Kalman filter while achieving guaranteed statistical optimality. The recursive computational scheme is developed in the set-membership context. Our improvements achieve guaranteed interval inversion whereas the original version IKF [Chen 1997] uses an instance (the upper bound) of the interval matrix to avoid the possible singularity problems. This point of view leads to a sub-optimal solution that does not preserve guaranteed results, some solutions being lost. On the contrary, in the presence of unknown-but-bounded parameters and measurement statistical errors, our estimation approach in the form of the iIKF provides guaranteed estimates, while maintaining a computational burden comparable to that of classic statistical approaches. Several constraint based techniques have also been implemented to limit the overestimation effect due to interval propagation within the interval Kalman filter recursive structure. The results have shown that the iIKF out puts bounded estimates that enclose all the solutions consistent with bounded errors and achieves good overestimation control. iIKF is used to propose a fault detection algorithm which makes use of a Semi-Closed Loop strategy which does not correct the state estimate with the measure as soon as a fault is detected. Two methods for generating fault indicators are proposed : they use the a priori state estimate and a threshold based on the a posteriori and a priori covariance matrix, respectively, and check the consistency against the measured output. Through different examples, the advantages of the iIKF with respect to previous versions are exhibited and the efficiency of the iIKF based Semi-Closed Loop fault detection algorithm is clearly demonstrated.
Identifer | oai:union.ndltd.org:theses.fr/2013INPT0001 |
Date | 12 September 2013 |
Creators | Xiong, Jun |
Contributors | Toulouse, INPT, Jauberthie, Carine, Travé-Massuyès, Louise |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds