Yes / Construction and demolition waste (CDW) has reached severe environmental and economic dimensions due to its
large volume among all solid waste, highlighting the importance of local actions to manage, recycle, and reuse
CDW. Ductile demountable connections are necessary to disassemble and reuse the concrete structural members
and fast assembly of precast structures in seismic regions without generating waste. In this study, the seismic
performance of CDW-based reinforced geopolymer concrete columns has been investigated. Six ½ scaled columns
(half of which were demountable and the other half monolithic) were experimentally tested under reversed
cyclic lateral displacement excursions, considering three different levels of constant axial loading to determine
failure mechanisms, load–displacement responses, ductilities, energy dissipation capacities, stiffness degradation
relations, and curvature distributions. The obtained test results were used to determine the performance of CDWbased geopolymer concrete columns and compare the performances of the demountable connection with the
monolithic connection. The test results showed that the novel demountable connection for precast concrete
frames exhibited better seismic performance in terms of maximum lateral load capacity, initial stiffness, energy
dissipation capacity, and maximum curvature than their monolithic counterparts. Besides, increasing the axial
compression ratio on the columns caused an increase in lateral load capacity, energy dissipation capacity, energy
dissipation ratio, and initial curvature stiffness; however, it decreased the ductility. Finally, the capacity predictions of current codes, i.e., TS500 and ACI318, were conservative when compared with experimental results. / This publication is a part of doctoral dissertation work by the first author in the Academic Program of Civil Engineering, Institute of Science, Hacettepe University. The authors gratefully acknowledge the financial assistance of the European Union’s Horizon 2020 research and innovation program under grant agreement No: 869336, ICEBERG (Innovative Circular Economy Based solutions demonstrating the Efficient recovery of valuable material Resources from the Generation of representative End-of-Life building material). This work was also supported by Newton Prize 2020. The fifth and seventh authors acknowledge the financial support received from the European Union’s Horizon 2020 research and innovation program under the Marie SkłodowskaCurie grant agreement No 894100. / The full-text of this article will be released for public view at the end of the publisher embargo on 4th Oct 2024.
Identifer | oai:union.ndltd.org:BRADFORD/oai:bradscholars.brad.ac.uk:10454/19652 |
Date | 09 October 2023 |
Creators | Akduman, S., Aktepe, R., Aldemir, A., Ozcelikci, E., Yildirim, Gurkan, Sahmaran, M., Ashour, Ashraf |
Source Sets | Bradford Scholars |
Language | English |
Detected Language | English |
Type | Article, Accepted manuscript |
Rights | © 2023 Elsevier. Reproduced in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license., CC-BY-NC-ND |
Page generated in 0.0138 seconds