In this thesis we present the Stone representation theorem, generally known as Stone duality in the point-free context. The proof is choice-free and, since we do not have to be concerned with points, it is by far simpler than the original. For each infinite cardinal κ we show that the counter- part of the κ-complete Boolean algebras is constituted by the κ-basically disconnected Stone frames. We also present a precise characterization of the morphisms which correspond to the κ-complete Boolean homomorphisms. Although Booleanization is not functorial in general, in the part of the dual- ity for extremally disconnected Stone frames it is, and constitutes an equiv- alence of categories. We finish the thesis by focusing on the De Morgan (or extremally disconnected) frames and present a new characterization of these by their superdense sublocales. We also show that in contrast with this phenomenon, a metrizable frame has no non-trivial superdense sublocale; in other words, a non-trivial Čech-Stone compactification of a metrizable frame is never metrizable. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:327819 |
Date | January 2013 |
Creators | Jakl, Tomáš |
Contributors | Pultr, Aleš, Fiala, Jiří |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds