We present a periodic technique for measuring the thermal conductivity and diffusivity of thin samples simultaneously. In samples of this type, temperature measurements must be made across the sample faces and are therefore subject to large error due to the interface resistance between the temperature sensor and the sample. The technique uses measurements of the amplitude and phase of the periodic temperature across both a reference sample and the unknown material at several different frequencies. Modeling of the heat flow in the sample allows the simultaneous determination of the thermal parameters of the sample as well as the interface resistance. Data will be presented for standard materials to show the viability of the technique.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1603 |
Date | 15 December 2007 |
Creators | May, Garrett |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.0021 seconds