Return to search

A quantitative forward modelling analysis of the controls on passive rift-margin stratigraphy

A quantitative forward model has been developed to investigate the controls on the deposition, erosion, and preservation of passive rift margin stratigraphy. The model includes thermal subsidence, variable absolute sealevel, flexural isostasy, subaerial and submarine deposition on fluvial and marine equilibrium profiles, and the facility to vary sediment supply through time. Results from the quantitative model can be used to reproduce elements of the sequence stratigraphic depositional model. Conducting sensitivity tests demonstrates that variables such as sediment supply and fluvial profile behaviour are likely to be of equal importance to thermal subsidence and eustasy in passive margin stratigraphy. Sensitivity tests with the quantitative model also demonstrate the problems associated with attempting to use a discretised stratigraphic model to investigate unforced cyclicty resulting from complex interactions in stratigraphic systems. Although the model appears capable of producing such unforced cyclical behaviour, this cyclicity is shown to be due to a numerical instability within the model which occurs with certain initial conditions and assumptions. The applicability of the model to observed stratigraphy is tested by comparing specific model output to patterns of stratigraphy from the North American Atlantic margin. The results from this test demonstrate that although the model is in many respects simplistic when compared to the complexities of natural systems, it is nevertheless capable of reproducing some of the basic elements of the observed stratigraphic patterns.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:386816
Date January 1994
CreatorsBurgess, Peter Mark
ContributorsAllen, P. A. : Watts, Anthony Brian
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:1249833d-ef11-4327-bdbd-5d0c40faa29e

Page generated in 0.0025 seconds