Return to search

Diagnóstico de distúrbios de tensão em sistemas de distribuição baseado num sistema imunológico artificial com aprendizado continuado /

Orientador: Carlos Roberto Minussi / Resumo: Esta pesquisa é dedicada ao desenvolvimento de uma metodologia para a realização do diagnóstico de distúrbios de tensão de sistemas de distribuição de energia elétrica, baseada no uso de sistemas imunológicos artificiais (SIA). Trata-se da proposição de um novo paradigma no ambiente dos SIA que confere o aprendizado de modo contínuo (plasticidade). Esta concepção permite compor um sistema de diagnóstico apto a aprender continuamente, contemplando novos tipos de distúrbios advindos da constante evolução do setor elétrico, sem a necessidade de reiniciar o processo de aprendizado. Neste contexto, empregam-se dois algoritmos imunológicos artificiais, sendo o algoritmo de seleção negativa, responsável pelo processo de reconhecimento de padrões, e o algoritmo de seleção clonal responsável pelo processo de aprendizado. A principal aplicação deste novo método é auxiliar na operação do sistema durante distúrbios, bem como, supervisionar o sistema de proteção, e estar apto a acompanhar a evolução dos sistemas elétricos adquirindo conhecimento continuamente. Para avaliar a eficácia e o desempenho deste novo método foram realizadas simulações de distúrbios de tensão em sistemas de distribuições de energia elétrica com 5, 33, 84 e 134 barras, no software ATP/EMTP. Os resultados obtidos com esta abordagem mostram robustez e eficiência quando comparados à literatura. / Doutor

Identiferoai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000875252
Date January 2016
CreatorsLima, Fernando Parra dos Anjos.
ContributorsUniversidade Estadual Paulista "Júlio de Mesquita Filho" Faculdade de Engenharia (Campus de Ilha Solteira).
PublisherIlha Solteira,
Source SetsUniversidade Estadual Paulista
LanguagePortuguese
Detected LanguagePortuguese
Typetext
Formatf.
RelationSistema requerido: Adobe Acrobat Reader

Page generated in 0.0026 seconds