The Aldous order is an ordering of representations of the symmetric group motivated by the Aldous Conjecture, a conjecture about random processes proved in 2009. In general, the Aldous order is very difficult to compute, and the proper relations have yet to be determined even for small cases. However, by restricting the problem down to Young-Jucys-Murphy elements, the problem becomes explicitly combinatorial. This approach has led to many novel insights, whose proofs are simple and elegant. However, there remain many open questions related to the Aldous Order, both in general and for the Young-Jucys-Murphy elements.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1034 |
Date | 31 May 2012 |
Creators | Newhouse, Jack |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © Jack Newhouse, default |
Page generated in 0.0019 seconds