Ce travail de thèse porte sur le développement d’une méthodologie efficace pour la conception analogique, des algorithmes et des outils correspondants qui peuvent être utilisés dans la conception dynamique de fonctions linéaires à temps continu. L’objectif principal est d’assurer que les performances pour un système complet peuvent être rapidement investiguées, mais avec une précision comparable aux évaluations au niveau transistor.Une première direction de recherche a impliqué le développement de la méthodologie de conception basée sur le processus d'optimisation automatique de cellules au niveau transistor et la synthèse de macro-modèles analogiques de haut niveau dans certains environnements comme Mathworks - Simulink, VHDL-AMS ou Verilog-A. Le processus d'extraction des macro-modèles se base sur un ensemble complet d'analyses (DC, AC, transitoire, paramétrique, Balance Harmonique) qui sont effectuées sur les schémas analogiques conçues à partir d’une technologie spécifique. Ensuite, l'extraction et le calcul d'une multitude de facteurs de mérite assure que les modèles comprennent les caractéristiques de bas niveau et peuvent être directement régénéré au cours de l'optimisation.L'algorithme d'optimisation utilise une méthode bayésienne, où l'espace d’évaluation est créé à partir d'un modèle de substitution (krigeage dans ce cas), et la sélection est effectuée en utilisant le critère d’amélioration (Expected Improvement - EI) sujet à des contraintes. Un outil de conception a été développé (SIMECT), qui a été intégré comme une boîte à outils Matlab, employant les algorithmes d’extraction des macro-modèles et d'optimisation automatique. / The aim of this thesis is to establish an efficient analog design methodology, the algorithms and the corresponding design tools which can be employed in the dynamic conception of linear continuous-time (CT) functions. The purpose is to assure that the performance figures for a complete system can be rapidly investigated, but with comparable accuracy to the transistor-level evaluations. A first research direction implied the development of the novel design methodology based on the automatic optimization process of transistor-level cells using a modified Bayesian Kriging approach and the synthesis of robust high-level analog behavioral models in environments like Mathworks – Simulink, VHDL-AMS or Verilog-A.The macro-model extraction process involves a complete set of analyses (DC, AC, transient, parametric, Harmonic Balance) which are performed on the analog schematics implemented on a specific technology process. Then, the extraction and calculus of a multitude of figures of merit assures that the models include the low-level characteristics and can be directly regenerated during the optimization process.The optimization algorithm uses a Bayesian method, where the evaluation space is created by the means of a Kriging surrogate model, and the selection is effectuated by using the expected improvement (EI) criterion subject to constraints.A conception tool was developed (SIMECT), which was integrated as a Matlab toolbox, including all the macro-models extraction and automatic optimization techniques.
Identifer | oai:union.ndltd.org:theses.fr/2013SUPL0002 |
Date | 14 January 2013 |
Creators | Tugui, Catalin Adrian |
Contributors | Supélec, Bénabes, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.1531 seconds