Return to search

Microstructure-sensitive simulation of shock loading in metals

A constitutive model has been developed to model the shock response of single crystal aluminum from peak pressures ranging from 2-110 GPa. This model couples a description of higher-order thermoelasticity with a dislocation-based viscoplastic formulation, both of which are formulated for single crystals. The constitutive model has been implemented using two numerical methods: a plane wave method that tracks the propagating wave front; and an extended one-dimensional, finite-difference method that can be used to model spatio-temporal evolution of wave propagation in anisotropic materials. The constitutive model, as well as these numerical methods, are used to simulate shock wave propagation in single crystals, polycrystals, and pre-textured polycrystals. Model predictions are compared with extensive existing experimental data and are then used to quantify the influence of the initial material state on the subsequent shock response. A coarse-grained model is then proposed to capture orientation-dependent deformation heterogeneity, and is shown to replicate salient features predicted by direct finite-difference simulation of polycrystals in the weak shock regime. The work in this thesis establishes a general framework that can be used to quantify the influence of initial material state on subsequent shock behavior not only for aluminum single crystals, but for other face-centered cubic and lower symmetry crystalline metals as well.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/51853
Date22 May 2014
CreatorsLloyd, Jeffrey T.
ContributorsMcDowell, David L.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0025 seconds