Return to search

An Anisotropic Damage Mechanics Model for Concrete with Applications for Fatigue Loading and Freeze-Thaw Effects

It is well known that the formation and propagation of microcracks within concrete is anisotropic in nature, and has a degrading effect on its mechanical performance. In this thesis an anisotropic damage mechanics model is formulated for concrete which can predict the behavior of the material subjected to monotonic loading, fatigue loading, and freeze-thaw cycles. The constitutive model is formulated using the general framework of the internal variable theory of thermodynamics. Kinetic relations are used to describe the directionality of damage accumulation and the associated softening of mechanical properties. The rate independent model is then extended to cover fatigue loading cycles and freeze-thaw cycles. Two simple softening functions are used to predict the mechanical properties of concrete as the number of cyclic loads as well as freeze-thaw cycles increases. The model is compared with experimental data for fatigue and freeze-thaw performance of plain concrete. / DOT-MPC grant / Department of Civil Engineering, North Dakota State University

Identiferoai:union.ndltd.org:ndsu.edu/oai:library.ndsu.edu:10365/26994
Date January 2013
CreatorsReberg, Andrew Steven
PublisherNorth Dakota State University
Source SetsNorth Dakota State University
Detected LanguageEnglish
Typetext/thesis
Formatapplication/pdf
RightsNDSU Policy 190.6.2, https://www.ndsu.edu/fileadmin/policy/190.pdf

Page generated in 0.0151 seconds