The topic of this thesis is a mathematically rigorous derivation of formulae for the magnetic force which is exerted on a part of a bounded magnetized body by its surrounding. Firstly, the magnetic force is considered within a continuous system based on macroscopic magnetostatics. The force formula in this setting is called Brown''s force formula referring to W. F. Brown, who gave a mainly physically motivated discussion of it. This formula contains a surface integral which shows a nonlinear dependence on the normal. Brown assumes the existence of an additional term in the surface force which cancels the nonlinearity to allow an application of Cauchy''s theorem in continuum mechanics to a magnetoelastic material. The proof of Brown''s formula which is given in this work involves a suitable regularization of a hypersingular kernel and uses singular integral methods. Secondly, we consider a discrete, periodic setting of magnetic dipoles and formulate the force between a part of a bounded set and its surrounding. In order to pass to the continuum limit we start from the usual force formula for interacting magnetic dipoles. It turns out that the limit of the discrete force is different from Brown''s force formula. One obtains an additional nonlinear surface term which allows one to regard Brown''s assumption on the surface force as a consequence of the atomistic approach. Due to short range effects one obtains moreover an additional linear surface term in the continuum limit of the discrete force. This term contains a certain lattice sum which depends on a hypersingular kernel and the underlying lattice structure. / Das Thema dieser Arbeit ist eine mathematisch strenge Herleitung von Formeln für die magnetische Kraft, die auf einen Teil eines beschränkten, magnetischen Körpers durch seine Umgebung ausgeübt wird. Zunächst wird die magnetische Kraft in einem kontinuierlichen System auf Grundlage der makroskopischen Magnetostatik betrachtet. Mit Bezug auf W. F. Brown, der eine vor allem physikalisch motivierte Herleitung der Kraftformel gegeben hat, wird diese auch Brownsche Kraftformel genannt. Das Oberflächenintegral in dieser Formel zeigt eine nichtlineare Abhängigkeit von der Normalen. Um Cauchys Theorem aus der Kontinuumsmechanik in einem magnetoelastischen Material anwenden zu können, nimmt Brown an, dass die Oberflächenkraft einen zusäatzlichen Term enthält, der den nichtlinearen Ausdruck aufhebt. Der Beweis der Brownschen Kraftformel in dieser Arbeit beruht auf einer geeigneten Regularisierung eines hypersingulären Kerns und benutzt Methoden für singuläre Integrale. Danach gehen wir von einem diskreten, periodischen System von magnetischen Dipolen aus und betrachten die Kraft zwischen einem Teil einer beschränkten Menge und der Umgebung. Um zum Kontinuumslimes überzugehen, starten wir von der üblichen Kraftformel für wechselwirkende magnetische Dipole. Es zeigt sich, dass sich der Limes der diskreten Kraft von der Brownschen Kraftformel unterscheidet. Man erhält einen zusätzlichen nichtlinearen Oberflächenterm, der es ermöglicht, Browns Annahme als Konsequenz des atomistischen Zugangs zu sehen. Kurzreichweitige Effekte führen zudem zu einem linearen Oberflächenterm im Kontinuumlimes der diskreten Kraft. Dieser Zusatzterm enthält eine gewisse Gittersumme, die von einem hypersingulären Kern und der Struktur des zugrundeliegenden Gitters abhängt.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:10957 |
Date | 28 November 2004 |
Creators | Schlömerkemper, Anja |
Contributors | Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds