Return to search

Multiple Object Tracking with Occlusion Handling

Object tracking is an important problem with wide ranging applications. The purpose is to detect object contours and track their motion in a video. Issues of concern are to be able to map objects correctly between two frames, and to be able to track through occlusion. This thesis discusses a novel framework for the purpose of object tracking which is inspired from image registration and segmentation models. Occlusion of objects is also detected and handled in this framework in an appropriate manner.
The main idea of our tracking framework is to reconstruct the sequence of images
in the video. The process involves deforming all the objects in a given image frame,
called the initial frame. Regularization terms are used to govern the deformation of
the shape of the objects. We use elastic and viscous fluid model as the regularizer. The reconstructed frame is formed by combining the deformed objects with respect to the depth ordering. The correct reconstruction is selected by parameters that minimize
the difference between the reconstruction and the consecutive frame, called the target frame. These parameters provide the required tracking information, such as the contour of the objects in the target frame including the occluded regions. The regularization term restricts the deformation of the object shape in the occluded region and thus gives an estimate of the object shape in this region. The other idea is to use a segmentation model as a measure in place of the frame difference measure.
This is separate from image segmentation procedure, since we use the segmentation
model in a tracking framework to capture object deformation. Numerical examples are
presented to demonstrate tracking in simple and complex scenes, alongwith occlusion
handling capability of our model. Segmentation measure is shown to be more robust with regard to accumulation of tracking error.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/5020
Date16 February 2010
CreatorsSafri, Murtaza
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0017 seconds