Dans cette thèse, nous étudions la synchronisation, qui est un phénomène bien répandu dans la nature. Elle a été observée pour la première fois par Huygens en 1665. En se basant sur les résultats de la contrôlabilité frontière exacte, pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann, nous considérons la synchronisation frontière exacte (par groupes), ainsi que la détermination de l’état de synchronisation. Ensuite, nous considérons la contrôlabilité exacte et la synchronisation exacte (par groupes) pour le système couplé avec des contrôles frontières couplés de Robin. A cause du manque de régularité de la solution, nous rencontrons beaucoup plus de difficultés. Afin de surmonter ces difficultés, on obtient un résultat sur la trace de la solution faible du problème de Robin grâce aux résultats de régularité optimale de Lasiecka-Triggiani sur le problème de Neumann. Ceci nous a permis d’établir la contrôlabilité exacte, et, par la méthode de la perturbation compacte, la non-contrôlabilité exacte du système. De plus, nous allons étudier la détermination de l’état de synchronisation, ainsi que la nécessité des conditions de compatibilité des matrices de couplage. / This thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system.
Identifer | oai:union.ndltd.org:theses.fr/2018STRAD013 |
Date | 01 July 2018 |
Creators | Lu, Xing |
Contributors | Strasbourg, Université de Fudan (Shanghai, Chine), Rao, Bopeng, Li, Daqian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds