L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01061945 |
Date | 16 July 2014 |
Creators | Chenel, Aurélie |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds