Au cours des deux dernières décennies, la prise de conscience du changement climatique et des conséquences du réchauffement climatique a incité diverses institutions à prendre de nouvelles directives. Ces directives portent principalement sur le contrôle des émissions des gaz à effet de serre, sur l'utilisation des ressources énergétiques non conventionnelles et l'optimisation de la consommation d'énergie dans les systèmes existants. L'Union européenne a proposé de nombreux projets dans le cadre du 7e PCRD pour réaliser jusqu'à 20% d’économies d'énergie d’ici 2020. En particulier, selon la directive sur l'efficacité énergétique, les bâtiments sont majoritairement responsables de 40% des dépenses énergétiques en Europe et de 36% des émissions de CO2 ; c’est la raison pour laquelle un ensemble d’initiatives européennes dans le cadre du 7ième PCRD favorise l'utilisation de technologie intelligente dans les bâtiments et rationalise les règles existantes. Energy IN TIME est l'un des projets axés sur l'élaboration d'une méthode de contrôle basée sur la simulation intelligente de l'énergie qui permettra de réduire la consommation des bâtiments non résidentiels. Ce mémoire de thèse propose plusieurs solutions novatrices pour réaliser les objectifs du projet mandaté à l'Université de Lorraine. Les solutions développées dans le cadre de ce projet devraient être validées sur différents sites européens de démonstration. Une première partie présente l'analyse détaillée de ces sites de démonstration et leurs contraintes respectives. Un cadre général correspondant à la construction type de ces sites a été élaboré pour simuler leur comportement. Ce cadre de construction de référence sert de banc d'essai pour la validation des solutions proposées dans ce travail de thèse. Sur la base de la conception de la structure de construction de référence, nous présentons une formulation de contrôle économique utilisant un modèle de contrôle prédictif minimisant la consommation d'énergie. Ce contrôle optimal possède des propriétés de contrôle conscientes de la maintenance. En outre, comme les bâtiments sont des systèmes complexes, les occurrences de pannes peuvent entraîner une détérioration de l'efficacité énergétique ainsi que du confort thermique pour les occupants à l'intérieur des bâtiments. Pour résoudre ce problème, nous avons élaboré une stratégie de diagnostic des dysfonctionnements et une stratégie de contrôle adaptatif des défauts basé sur le modèle économique ; les résultats en simulation ont été obtenus sur le bâtiment de référence. En outre, l'application des solutions proposées peut permettre de relever des défis ambitieux en particulier dans le cas de bâtiments à grande échelle. Dans la partie finale de cette thèse, nous nous concentrons sur le contrôle économique des bâtiments à grande échelle en formulant une approche novatrice du contrôle prédictif de mode réparti. Cette formule de contrôle distribué présente de nombreux avantages tels que l'atténuation de la propagation des défauts, la flexibilité dans la maintenance du bâtiment et les stratégies simplifiées de contrôle du plug-and-play. Enfin, une attention particulière est accordée au problème d'estimation des mesures dont le nombre est limité sur des bâtiments à grande échelle. Les techniques d'estimation avancées proposées sont basées sur les méthodologies de l'horizon mobile. Leur efficacité est démontrée sur les systèmes de construction de référence / Since the last two decades, there has been a growing awareness about the climate change and global warming that has instigated several Directorate initiatives from various administrations. These initiatives mainly deal with controlling greenhouse gas emissions, use of non-conventional energy resources and optimization of energy consumption in the existing systems. The European Union has proposed numerous projects under FP7 framework to achieve the energy savings up to 20% by the year 2020. Especially, stated by the Energy Efficiency Directive, buildings are majorly responsible for 40% of energy resources in Europe and 36% of CO2 emission. Hence a class of projects in the FP7 framework promotes the use of smart technology in the buildings and the streamline existing rules. Energy IN TIME is one of the projects focused on developing a Smart Energy Simulation Based Control method which will reduce the energy consumption in the operational stage of existing non-residential buildings. Essentially, this thesis proposes several novel solutions to fulfill the project objectives assigned to the University of Lorraine. The developed solutions under this project should be validated on the demonstration sites from various European locations. We design a general benchmark building framework to emulate the behavior of demonstration sites. This benchmark building framework serves as a test bench for the validation of proposed solutions given in this thesis work. Based on the design of benchmark building layout, we present an economic control formulation using model predictive control minimizing the energy consumption. This optimal control has maintenance-aware control properties. Furthermore, as in buildings, fault occurrences may result in deteriorating the energy efficiency as well as the thermal comfort for the occupants inside the buildings. To address this issue, we design a fault diagnosis and fault adaptive control techniques based on the model predictive control and demonstrate the simulation results on the benchmark building. Moreover, the application of these proposed solutions may face great challenges in case of large-scale buildings. Therefore, in the final part of this thesis, we concentrate on the economic control of large-scale buildings by formulating a novel approach of distributed model predictive control. This distributed control formulation holds numerous advantages such as fault propagation mitigation, flexibility in the building maintenance and simplified plug-and-play control strategies, etc... Finally, a particular attention is paid to the estimation problem under limited measurements in large-scale buildings. The suggested advanced estimation techniques are based on the moving horizon methodologies and are demonstrated on the benchmark building systems
Identifer | oai:union.ndltd.org:theses.fr/2017LORR0142 |
Date | 18 October 2017 |
Creators | Darure, Tejaswinee |
Contributors | Université de Lorraine, Hamelin, Frédéric, Yamé, Joseph Julien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds