Return to search

Une méthode de région de confiance avec ensemble actif pour l'optimisation non linéaire sans dérivées avec contraintes de bornes appliquée à des problèmes aérodynamiques bruités.

L'optimisation sans dérivées (OSD) a connu un regain d'intérêt ces dernières années, principalement motivée par le besoin croissant de résoudre les problèmes d'optimisation définis par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception technique, la restauration d'images médicales ou de nappes phréatiques). Ces dernières années, un certain nombre de méthodes d'optimisation sans dérivée ont été développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont avérées obtenir de bons résultats. Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur l'interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algorithme repose sur la technique d'auto-correction de la géométrie proposé par Scheinberg and Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géométrie dans les méthodes d'OSD à base de modèles. Dans notre travail, nous avons pu améliorer considérablement l'efficacité de leur méthode, tout en maintenant ses bonnes propriétés de convergence. De plus, nous examinons l'influence de différents types de modèles d'interpolation sur les performances du nouvel algorithme. Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne par l'application d'une stratégie d'activation. Considérer une méthode avec ensemble actif pour l'optimisation basée sur des modèles d'interpolation donne la possibilité d'économiser une quantité importante d'évaluations de fonctions. Il permet de maintenir les ensembles d'interpolation plus petits tout en poursuivant l'optimisation dans des sous-espaces de dimension inférieure. L'algorithme résultant montre un comportement numérique très compétitif. Nous présentons des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes d'OSD. Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l'ensemble des problèmes sans bruit. Le choix des problèmes bruités a été guidé par le désir d'imiter les problèmes d'optimisation basés sur la simulation. Enfin, nous présentons des résultats sur une application réelle d'un problème de conception de forme d'une aile fourni par Airbus.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00639257
Date07 June 2011
CreatorsTroltzsch, Anke
PublisherInstitut National Polytechnique de Toulouse - INPT
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds