This thesis investigates a novel DC/AC resonant inverter of Induction Heating (IH) system presenting a Multilevel Neutral Point Clamped (MNPCI) topology, as a new part of power supply design. The main function of the prototype is to provide a maximum and steady state power transfer from converter to the resonant load tank, by achieving zero current switching (ZCS) with selecting the best design of load tank topology, and utilizing the advantage aspects of both the Voltage Fed Inverter (VFI) and Current Fed Inverter (CFI) kinds, therefore it can considered as a hybrid-inverter (HVCFI) category . The new design benefits from series resonant inverter design through using two bulk voltage source capacitors to feed a constant voltage delivery to the MNPCI inverter with half the DC rail voltage to decrease the switching losses and mitigate the over voltage surge occurred in inverter switches during operation which may cause damage when dealing with high power systems. Besides, the design profits from the resonant load topology of parallel resonant inverter, through using the LLC resonant load tank. The design gives the advantage of having an output current gain value of about Quality Factor (Q) times the inverter current and absorbs the parasitic components. On the contrary, decreasing inverter current means decreasing the switching frequency and thus, decreasing the switching losses of the system. This aspect increases the output power, which increases the heating efficiency. In order for the proposed system to be more reliable and matches the characteristics of IH process , the prototype is modelled with a variable LLC topology instead of fixed load parameters with achieving soft switching mode of ZCS and zero voltage switching (ZVS) at all load conditions and a tiny phase shift angle between output current and voltage, which might be neglected. To achieve the goal of reducing harmonic distortion, a new harmonic control modulation is introduced, by controlling the ON switching time to obtain minimum Total Harmonic Distortion (THD) content accompanied with optimum power for heating energy.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:703314 |
Date | January 2017 |
Creators | Al Shammeri, Bashar Mohammed Flayyih |
Publisher | University of Plymouth |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/10026.1/8305 |
Page generated in 0.0103 seconds