La empresa retail de inversiones extranjeras cuenta con 89 locales en el Perú. Sus
objetivos son lograr crecimiento a nivel nacional, ser atractivo para los inversionistas,
permitir ofrecer productos de calidad, mejorar sus procesos para lograr la satisfacción y
bienestar de los clientes. Como parte del análisis hecho de la mano del área de Category
Management y comercial, se pudo determinar cómo problemática de la compañía es que
tienen aproximadamente 2,700 skus con una rotación de más de 90 días en góndola ( 3
millones de soles en inventario) y que representan el 25.6% del surtido total, además cuya
rentabilidad estimada es de 6.8%, muy por debajo del promedio del clúster que es 63.6%, por
lo que es importante realizar una mejora de la propuesta de surtido de la cadena. Se realizó
búsqueda de literatura, encontrándose diversas alternativas que son usadas actualmente por
las principales cadenas retail en el mundo como Walmart, Aldi, Mercadona y Carrefour.
Luego del análisis de las alternativas de solución, se propone el uso de una técnica para
encontrar el surtido adecuado en base al uso de BIG DATA, inteligencia artificial y
aprendizaje automático. Se propone una herramienta que analice e integre fuentes internas y
externas de datos de la empresa y usarlos para predecir y proponer el surtido óptimo por
clúster. Con el uso de esta tecnología se espera reducir en un 50% el inventario cuya rotación
es mayor a 90 días durante el primer semestre sin que esto signifique una disminución en la
venta de los productos relacionados, afecte la rentabilidad o satisfacción del cliente. El
presente documento se enfoca sólo en los productos cuyas tiendas tienen una superficie
mayor a 4 mil mts2 y público objetivo súper Premium. / The foreign investment retail company has 89 stores in Peru. Its goals are to achieve
national growth, to be attractive to investors, to offer quality products, to improve its
processes to achieve customer satisfaction and well-being. As part of the analysis carried out
by the Category Management and commercial area, it was determined that the company's
problem is that they have approximately 2,700 skus with a rotation of more than 90 days in
shelf (3 million soles in inventory) and that represents 25.6% of the total assortment, in
addition to whose estimated profitability is 6.8%, below the cluster average which is 63.6%,
so it is important to improve the chain's assortment proposal. A literature search was carried
out, finding various alternatives that are currently used by the worldwide main retail chains
such as Walmart, Aldi, Mercadona and Carrefour. After analyzing the alternative solutions,
the use of a technique is proposed to find the appropriate assortment based on the use of BIG
DATA, artificial intelligence and machine learning. This tool will analyze and integrate
internal and external sources of the company data and uses them to predict and propose the
optimal assortment per cluster. With this technology, it is expected to reduce by 50% the
inventory whose turnover is greater than 90 days during the first semester, without this means
decrease in the sale of related products, affecting profitability or customer satisfaction. This
document focuses only on products whose stores have a surface area greater than 4 thousand
m2 and a Premium target audience.
Identifer | oai:union.ndltd.org:PUCP/oai:tesis.pucp.edu.pe:20.500.12404/23410 |
Date | 24 September 2022 |
Creators | Coaquira Torres, Joao Zaid, López Ravello, Liliana Marizeth, Plasencia Quispe, Luis Dennis, Zamata Chiri, Claudia |
Contributors | Rojas Valdez, Kelly |
Publisher | Pontificia Universidad Católica del Perú, PE |
Source Sets | Pontificia Universidad Católica del Perú |
Language | Spanish |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/closedAccess |
Page generated in 0.0022 seconds