Return to search

Désassemblage et détection de logiciels malveillants auto-modifiants / Disassembly and detection of self-modifying malwares

Cette thèse porte en premier lieu sur l'analyse et le désassemblage de programmes malveillants utilisant certaines techniques d'obscurcissement telles que l'auto-modification et le chevauchement de code. Les programmes malveillants trouvés dans la pratique utilisent massivement l'auto-modification pour cacher leur code utile à un analyste. Nous proposons une technique d'analyse hybride qui utilise une trace d'exécution déterminée par analyse dynamique. Cette analyse découpe le programme auto-modifiant en plusieurs sous-parties non auto-modifiantes que nous pouvons alors étudier par analyse statique en utilisant la trace comme guide. Cette seconde analyse contourne d'autres techniques de protection comme le chevauchement de code afin de reconstruire le graphe de flot de contrôle du binaire analysé. Nous étudions également un détecteur de programmes malveillants, fonctionnant par analyse morphologique : il compare les graphes de flot de contrôle d'un programme à analyser à ceux de programmes connus comme malveillants. Nous proposons une formalisation de ce problème de comparaison de graphes, des algorithmes permettant de le résoudre efficacement et détaillons des cas concrets d'application à la détection de similarités logicielles / This dissertation explores tactics for analysis and disassembly of malwares using some obfuscation techniques such as self-modification and code overlapping. Most malwares found in the wild use self-modification in order to hide their payload from an analyst. We propose an hybrid analysis which uses an execution trace derived from a dynamic analysis. This analysis cuts the self-modifying binary into several non self-modifying parts that we can examine through a static analysis using the trace as a guide. This second analysis circumvents more protection techniques such as code overlapping in order to recover the control flow graph of the studied binary. Moreover we review a morphological malware detector which compares the control flow graph of the studied binary against those of known malwares. We provide a formalization of this graph comparison problem along with efficient algorithms that solve it and a use case in the software similarity field

Identiferoai:union.ndltd.org:theses.fr/2015LORR0011
Date11 March 2015
CreatorsThierry, Aurélien
ContributorsUniversité de Lorraine, Marion, Jean-Yves
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0015 seconds