Return to search

Comptage des points rationnels dans les variétés arithmétiques / Counting rational points in the arithmetic varieties

Le comptage des points rationnels est un problème classique en géométrie diophantienne. On s’intéresse à des majorations du nombre des points rationnels de hauteur bornée qui sont valables pour toute hypersurface arithmétique de degré fixé d’un espace projectif. Dans ce but, on construit une famille d’hypersurfaces auxiliaires qui contiennent tous les points rationnels de hauteur bornée mais ne contiennent pas le point générique de l’hypersurface initiale. Plusieurs outils géométriques sont développés ou adaptés dans le cadre de la géométrie d’Arakelov et de la géométrie diophantienne afin d’appliquer la méthode des déterminants par la langage de la géométrie d’Arakelov, notamment une majoration et une minoration explicite uniforme de la fonction de Hilbert-Samuel arithmétrique d’une hypersurface. Pour un schéma projectif réduit de dimension pure sur un anneau d’entiers algébriques, on donne une majoration du nombre des places sur lesquelles la fibre ne soit pas réduite. Cette majoration est utile pour la construction des hypersurfaces auxiliaires mentionnées au-dessus. De plus, la géométrie sur un corps fini joue un rôle important dans ce problème. Dans ce travail, l’un des ingrédients clé dans ce travail est une majoration effective liée à une fonction de comptage des multiplicités des points rationnels dans une hypersurface projective réduite définie sur un corps fini, qui donne une description de la complexité de son lieu singulier. Pour ce problème de comptage de multiplicités, l’outil principal est la théorie d’intersection sur un espace projectif. / Counting rational points is a classical problem in Diophantine geometry. We are interested inupper bounds for the number of rational points of bounded height of an arithmetic hypersurface with bounded degree in a projective space. For this propose, we construct a family of auxiliary hypersurfaces which contain all these rational points of bounded height but don’t contain the generic point of this hypersurface. Several tools of Arakelov geometry and Diophantine geometry are developed or adapted in this work in order to apply the determinant method by the approach of Arakelov geometry, especially a uniform explicit upper bound and a uniform explicit lower bound of the arithmetic Hilbert-Samuel function of a hypersurface. For a reduced pure dimensional projective scheme over a ring of algebraic integers, we give an upper bound of the number of places over which the fiber is not reduced any longer. This upper bound is useful for the construction of these auxilary hypersurfaces mentioned above. In addition, the geometry over a finite field plays an important role in this problem. One of the key ingredients in this work is an e_ective upper bound for a counting function of multiplicities of rational points in a reduced projective hypersurface defined over a finite field, which gives a description of the complexity of its singular locus. For this problem of counting multiplicities, the major tool is intersection theory on a projective space

Identiferoai:union.ndltd.org:theses.fr/2016USPCC295
Date16 December 2016
CreatorsLiu, Chunhui
ContributorsSorbonne Paris Cité, Hindry, Marc, Chen, Huayi
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Collection

Page generated in 0.0017 seconds