Return to search

Nitrogen Use Efficiency of Polymer-Coated Urea

Plants require N to complete their life cycle. Without adequate concentration of N, crops will not produce their potential yields. For turfgrass systems, N fertilizer application allows for the maintenance of functional, aesthetic, and recreational properties. However, fertilizer mismanagement is common and leads to N pollution in the environment. Controlled-release and slow-release fertilizers can enhance nitrogen (N)-use efficiency, reduce N pollution, minimize the need for repeated fertilizer applications, and reduce turfgrass shoot growth and associated costs. In order to evaluate the effectiveness of these fertilizers in the Intermountain West, research is needed. The timing of N release was evaluated for seven urea fertilizers: uncoated, sulfur coated (SCU), polymer-sulfur coated (PSCU), and four polymer-coated (PCU) with release timings of 45, 75, 120, and 180 d estimated release. These products were placed on bare soil, a Kentucky bluegrass (Poa pratensis L.) thatch layer, and incorporated into soil. These three placement treatments were replicated to allow for enough samples to be placed in two locations. The first was outside in a field to represent field conditions with diurnal fluctuating temperatures and the second was placed in a storage facility to replicate laboratory conditions with static diurnal temperatures. The PCU prills incorporated into soil under field conditions generally released N over the estimated release period. However, when applied to bare soil or thatch, N from PCU had 80% or greater N release by 35 d after application regardless of expected release time. Fertilizers under laboratory conditions had minimal N release despite having similar average daily temperatures, suggesting that fluctuating temperatures impact N release. The PSCU and SCU treatments were no different from uncoated urea, showing no slow release properties for this particular product. Spring-applied N fertilizer trials were conducted over two years to determine the optimal N rate for Kentucky bluegrass. Similar PCU120 products were applied at 50, 75, and 100% of the recommended full rate, while also being compared to an unfertilized control and urea applied either all at once or split monthly. Spring-applied PCU showed minimal initial N response while urea applied all at once resulted in an initial spike of N uptake. Once PCU began to release N, there was minimal difference for all rates compared to urea split monthly for biomass growth, verdure, and shoot tissue N. Although at the 50% rate, there were a few sampling dates with slower growth and lower verdure. The decrease in verdure at this low rate was slight, and it is recommended that PCU could be applied effectively at a reduced rate between 50 and 75%. Although for better results, additional quick release N is required to compensate for early season lag in N release.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-4984
Date19 March 2014
CreatorsRansom, Curtis J.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0033 seconds