Return to search

ANALYSIS AND OPTIMIZATION OF ELECTRICAL SYSTEMS IN A SOLAR CAR WITH APPLICATIONS TO GATO DEL SOL III-IV

Gato del Sol III, was powered by a solar array of 480 Silicon mono-crystalline photovoltaic cells. Maximum Power Point trackers efficiently made use of these cells and tracked the optimal load. The cells were mounted on a fiber glass and foam core composite shell. The shell rides on a lightweight aluminum space frame chassis, which is powered by a 95% efficient brushless DC motor. Gato del Sol IV was the University of Kentucky Solar Car Team’s (UKSCT) entry into the American Solar Car Challenge (ASC) 2010 event. The car makes use of 310 high density lithium-polymer batteries to account for a 5 kWh pack, enough to travel over 75 miles at 40 mph without power generated by the array. An in-house battery protection system and charge balancing system ensure safe and efficient use of the batteries. Various electrical sub-systems on the car communicate among each other via Controller Area Network (CAN). This real time data is then transmitted to an external computer via RF communication for data collection.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1030
Date01 January 2010
CreatorsPrayaga, Krishna Venkatesh
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Master's Theses

Page generated in 0.002 seconds