Return to search

Utilizing Trajectory Optimization in the Training of Neural Network Controllers

Applying reinforcement learning to control systems enables the use of machine learning to develop elegant and efficient control laws. Coupled with the representational power of neural networks, reinforcement learning algorithms can learn complex policies that can be difficult to emulate using traditional control system design approaches. In this thesis, three different model-free reinforcement learning algorithms, including Monte Carlo Control, REINFORCE with baseline, and Guided Policy Search are compared in simulated, continuous action-space environments. The results show that the Guided Policy Search algorithm is able to learn a desired control policy much faster than the other algorithms. In the inverted pendulum system, it learns an effective policy up to three times faster than the other algorithms. In the cartpole system, it learns an effective policy up to nearly fifteen times faster than the other algorithms.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3517
Date01 September 2019
CreatorsKimball, Nicholas
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0059 seconds