Column flotation cells have become increasingly popular in the coal industry due to their ability to improve flotation selectivity. The improvement can be largely attributed to the use of froth washing, which minimizes the nonselective entrainment of ultrafine minerals matter into the froth product. Unfortunately, the practice of adding wash water in conventional flotation machines has been largely unsuccessful in industrial trials. In order to better understand the causes of these failures, a detailed in-plant test program was undertaken to evaluate the use of froth washing at an operating coal preparation plant. The tests included detailed circuit audits (solid and liquid mass balances), salt tracer studies, and release analyses. The data collected from these tests have been used to develop criteria that describe when and how froth washing may be successfully applied in industrial flotation circuits.
A second series of tests was developed to look at other alternatives to froth washing and their effectiveness. This involved two-staged flotation circuitry. A two-staged approach was developed because the existing flotation cells did not have enough residence time to support froth washing. The process owner wanted to evaluate possible alternatives to column cell flotation. The testing included release analysis testing as well as a detailed series of tests with percent solids control to the secondary flotation unit. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35708 |
Date | 16 November 2001 |
Creators | McKeon, Timothy Josiah |
Contributors | Mining and Minerals Engineering, Luttrell, Gerald H., Yoon, Roe-Hoan, Adel, Gregory T. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | McKeonThesis-Final.pdf |
Page generated in 0.0056 seconds