Return to search

Three-dimensional computational modelling of a polymer electrolyte membrane fuel cell

The replacement of internal combustion engines used for transportation by polymer electrolyte membrane fuel cells (PEMFCs) is one goal of the future since they are clean, quiet, energy efficient and capable of quick start-up. At present, fuel cells are receiving much attention at both fundamental research, and technology development levels, but cost is the main factor that hinders the commercialisation of PEMFCs. In order to reduce cost, a better, fundamental description of fuel cell operation than is presently available is required. The operation of PEMFCs simultaneously involves electrochemical reactions, current distribution, fluid mechanics, multicomponent multiphase mixtures, and heat transfer processes. It is important to have a comprehensive mathematical model to provide improved understanding of the interactions between various electrochemical and transport phenomena in PEMFCs in order to aid in the design and optimisation of fuel cells. This thesis describes research at developing such a comprehensive model.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:289550
Date January 2003
CreatorsLum, Kah-Wai
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/35974

Page generated in 0.0017 seconds