Return to search

Developing Parsimonious and Efficient Algorithms for Water Resources Optimization Problems

In the current water resources scientific literature, a wide variety of engineering design problems are solved in a simulation-optimization framework. These problems can have single or multiple objective functions and their decision variables can have discrete or continuous values. The majority of current literature in the field of water resources systems optimization report using heuristic global optimization algorithms, including evolutionary algorithms, with great success. These algorithms have multiple parameters that control their behavior both in terms of computational efficiency and the ability to find near globally optimal solutions. Values of these parameters are generally obtained by trial and error and are case study dependent. On the other hand, water resources simulation-optimization problems often have computationally intensive simulation models that can require seconds to hours for a single simulation. Furthermore, analysts may have limited computational budget to solve these problems, as such, the analyst may not be able to spend some of the computational budget to fine-tune the algorithm settings and parameter values. So, in general, algorithm parsimony in the number of parameters is an important factor in the applicability and performance of optimization algorithms for solving computationally intensive problems.
A major contribution of this thesis is the development of a highly efficient, single objective, parsimonious optimization algorithm for solving problems with discrete decision variables. The algorithm is called Hybrid Discrete Dynamically Dimensioned Search, HD-DDS, and is designed based on Dynamically Dimensioned Search (DDS) that was developed by Tolson and Shoemaker (2007) for solving single objective hydrologic model calibration problems with continuous decision variables. The motivation for developing HD-DDS comes from the parsimony and high performance of original version of DDS. Similar to DDS, HD-DDS has a single parameter with a robust default value. HD-DDS is successfully applied to several benchmark water distribution system design problems where decision variables are pipe sizes among the available pipe size options. Results show that HD-DDS exhibits superior performance in specific comparisons to state-of-the-art optimization algorithms.
The parsimony and efficiency of the original and discrete versions of DDS and their successful application to single objective water resources optimization problems with discrete and continuous decision variables motivated the development of a multi-objective optimization algorithm based on DDS. This algorithm is called Pareto Archived Dynamically Dimensioned Search (PA-DDS). The algorithm parsimony is a major factor in the design of PA-DDS. PA-DDS has a single parameter from its search engine DDS. In each iteration, PA-DDS selects one archived non-dominated solution and perturbs it to search for new solutions. The solution perturbation scheme of PA-DDS is similar to the original and discrete versions of DDS depending on whether the decision variable is discrete or continuous. So, PA-DDS can handle both types of decision variables. PA-DDS is applied to several benchmark mathematical problems, water distribution system design problems, and water resources model calibration problems with great success.
It is shown that hypervolume contribution, HVC1, as defined in Knowles et al. (2003) is the superior selection metric for PA-DDS when solving multi-objective optimization problems with Pareto fronts that have a general (unknown) shape. However, one of the main contributions of this thesis is the development of a selection metric specifically designed for solving multi-objective optimization problems with a known or expected convex Pareto front such as water resources model calibration problems. The selection metric is called convex hull contribution (CHC) and makes the optimization algorithm sample solely from a subset of archived solutions that form the convex approximation of the Pareto front. Although CHC is generally applicable to any stochastic search optimization algorithm, it is applied to PA-DDS for solving six water resources calibration case studies with two or three objective functions. These case studies are solved by PA-DDS with CHC and HVC1 selections using 1,000 solution evaluations and by PA-DDS with CHC selection and two popular multi-objective optimization algorithms, AMALGAM and ε-NSGAII, using 10,000 solution evaluations. Results are compared based on the best case and worst case performances (out of multiple optimization trials) from each algorithm to measure the expected performance range for each algorithm. Comparing the best case performance of these algorithms shows that, PA-DDS with CHC selection using 1,000 solution evaluations perform very well in five out of six case studies. Comparing the worst case performance of the algorithms shows that with 1,000 solution evaluations, PA-DDS with CHC selection perform well in four out of six case studies. Furthermore, PA-DDS with CHC selection using 10,000 solution evaluations perform comparable to AMALGAM and ε-NSGAII. Therefore, it is concluded that PA-DDS with CHC selection is a powerful optimization algorithm for finding high quality solutions of multi-objective water resources model calibration problems with convex Pareto front especially when the computational budget is limited.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/7133
Date13 November 2012
CreatorsAsadzadeh Esfahani, Masoud
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation

Page generated in 0.0021 seconds