Die Schätzung von Posen ist ein bedeutendes Forschungsgebiet im Bereich der künstlichen Intelligenz, das die Mensch-Maschine-Interaktion vorantreibt und auch im Sport immer mehr an Relevanz gewinnt. Während menschliche Fußballspieler auf dem Feld mit den Schiedsrichtern ganz natürlich interagieren, wurde dieser Aspekt jedoch bisher in der Standard Platform League des Robocups vernachlässigt. Diese Arbeit untersucht einen weiteren Ansatz, um die Klassifizierung von statischen und dynamischen Schiedsrichterposen durchzuführen und damit dem großen Ziel, dass bis Mitte des 21. Jahrhunderts ein vollständig autonomes Roboter-Team nach den offiziellen FIFA-Regeln gegen den aktuellen Weltmeister gewinnen soll, einen Schritt näher zu kommen. Hierfür wurden Videos von relevanten Schiedsrichterposen erstellt und gesammelt. Anschließend wurden die menschlichen Gelenke mittels MoveNet extrahiert und die Pose mithilfe eines Convolutional Neural Networks klassifiziert. Dabei wurden zwei verschiedene Ansätze verfolgt: Ein Modell für jede Pose und ein Modell für alle Posen. Die Untersuchung zeigt, dass gute bis sehr gute Ergebnisse für statische und dynamische Posen erzielt werden können, wobei die Genauigkeit von einem Modell pro Pose 91,3% bis 99,3% mit einem Durchschnitt von 96,1% erreicht und die Genauigkeit von einem Modell für alle Posen eine Genauigkeit von 90,9% erreicht. Die erfolgreiche Anwendung der entwickelten Methodik zur Schätzung von Posen im Roboterfußball eröffnet vielversprechende Perspektiven für die Zukunft dieses Bereichs. Die gewonnenen Erkenntnisse können nicht nur zur Verbesserung der Leistungsfähigkeit von Fußballrobotern beitragen, sondern auch einen bedeutenden Beitrag zur weiteren Integration von KI-Technologien in unsere Gesellschaft leisten.:Inhaltsverzeichnis
Abbildungsverzeichnis
Tabellenverzeichnis
Abkürzungsverzeichnis
1 Einleitung
2 Einsatzszenario
2.1 Der RoboCup
2.2 Die Standard Platform League
2.3 Die In-Game Visual Referee Challenge
3 Grundlagen neuronaler Netze
3.1 Artificial Neural Networks
3.2 Convolutional Neural Networks
3.2.1 Architektur
3.2.2 Aktivierungsfunktionen
3.2.3 Weitere Optimierungsmöglichkeiten
3.3 Verschiedene Lernmethoden
3.4 Evaluation
4 State of the Art 10
4.1 Machine Learning Ansätze
4.1.1 Decision Trees
4.1.2 k-NN Algorithmus
4.2 Deep Learning Ansätze
4.2.1 Artificial Neural Network
4.2.2 Convolutionan Neural Network
4.2.3 Recurrent Neural Network
4.3 Auswahl des Vorgehens
4.3.1 Schlüsselpunkterkennung
4.3.2 Posenerkennung
5 Eigene Implementierung
5.1 Datensatz
5.2 Vorverarbeitung der Daten
5.2.1 Vorverarbeitung der Videos
5.2.2 Erstellung der Trainings- und Validierungsdaten
5.3 Ansatz 1: Ein Model pro Pose
5.3.1 Datensatz
5.3.2 Architektur
5.3.3 Bewertung
5.4 Ansatz 2: Ein Model für alle Posen
5.4.1 Datensatz
5.4.2 Architektur
5.4.3 Bewertung
5.5 Vergleich der Ansätze
6 Fazit und Ausblick
6.1 Fazit
6.2 Ausblick
Literatur
A Anhang
A.1 RoboCup Standard Platform League (NAO) Technical Challenges
A.2 Modelcard Movenet
A.3 Code und Datensätze
Eigenständigkeitserklärung
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:94085 |
Date | 14 October 2024 |
Creators | Jurkat, Freijdis |
Contributors | Wagner, Jens, Kalbitz, Tobias, Hochschule für Technik, Wirtschaft und Kultur Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | German |
Detected Language | German |
Type | doc-type:bachelorThesis, info:eu-repo/semantics/bachelorThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds