This thesis investigates how synthetic data can be utilized when training convolutional neural networks to detect flags with threatening symbols. The synthetic data used in this thesis consisted of rendered 3D flags with different textures and flags cut out from real images. The synthetic data showed that it can achieve an accuracy above 80% compared to 88% accuracy achieved by a data set containing only real images. The highest accuracy scored was achieved by combining real and synthetic data showing that synthetic data can be used as a complement to real data. Some attempts to improve the accuracy score was made using generative adversarial networks without achieving any encouraging results.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-150555 |
Date | January 2018 |
Creators | Lidberg, Love |
Publisher | Linköpings universitet, Medie- och Informationsteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds