Convolutional neural networks (CNNs) have been extensively used in many aspects, such as face and speech recognition, image searching and classification, and automatic drive. Hence, CNN accelerators have become a trending research. Generally, Graphics processing units (GPUs) are widely applied in CNNaccelerators. However, Field-programmable gate arrays (FPGAs) have higher energy and resource efficiency compared with GPUs, moreover, high-level synthesis tools based on Open Computing Language (OpenCL) can reduce the verification and implementation period for FPGAs. In this project, PipeCNN[1] is implemented on Intel DE10-Standard FPGA. This OpenCL design acceleratesAlexnet through the interaction between Advanced RISC Machine (ARM) and FPGA. Then, PipeCNN optimization based on memory read and convolution is analyzed and discussed.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-178174 |
Date | January 2021 |
Creators | Tianxu, Yue |
Publisher | Linköpings universitet, Elektroniska Kretsar och System |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds