Return to search

Solar Cooling : -A study of two thermal systems

Electricity-driven air-conditioning is energy-intensive and puts a strain to many grids during hot periods in warm climates. Solar thermal cooling could be an alternative to conventional cooling, using a renewable energy source and supplying the most energy during peak demand periods with insignificant effect to the electric grid. Office buildings in warm climates have high cooling loads, naturally peaking during daytime because of occupancy and ambient temperature. Thus, office buildings have a seemingly advantageous relationship between the possible supply of solar thermal energy and cooling demand. With this background, solar cooling systems for two office buildings with the same dimensions are investigated, placed in a tropical- and a sub-tropical location. There are great differences in the design conditions for solar cooling systems in the tropics and the sub-tropics, between the chosen locations Manila and Abu Dhabi more specifically. Manila has a quite evenly distributed cooling load while Abu Dhabi has a strongly pronounced summer season with very high maximum cooling loads, while the winter temperatures are relatively low. The prior described conditions creates a big difference between loads throughout the year, making a thermal chiller less effective in this aspect. However Abu Dhabi is expected to have an overall smoother- and ultimately a more high performance solar cooling system due to lower humidity, which facilitates the important cooling of the chiller. Evacuated tube collectors were used at both sites, where the collectors in Manila needs to be larger relative to the chiller cooling capacity, in order to compensate for the irregularity of direct solar radiation. The electricity price in Abu Dhabi is too low for the solar cooling system to be economically feasible compared to a conventional system, where the net values over 20 years are 163 000 € and 127 000 €, respectively. Manila has on its hand a very high price for electricity, making the 20-year net values for both the solar cooling- and the conventional system approximately 170 000 €.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-28454
Date January 2015
CreatorsÅhlund, Anton
PublisherHögskolan i Halmstad, Energivetenskap, Halmstad University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds