The aim of the study was to investigate the crystallization kinetics and solidification behaviour of Fe60Co8Mo5Zr10W2B15 bulk glass forming alloy. The solidification behaviour in near-equilibrium and non-equilibrium cooling conditions was studied.
The eutectic and peritectic reactions were found to exist in the solidification sequence of the alloy. The bulk metallic glass formation was achieved by using two
methods: quenching from the liquid state and quenching from the semi-state.
Scanning electron microscopy, x-ray diffraction and thermal analysis techniques
were utilized in the characterization of the samples produced throughout the study.
The choice of the starting material and the alloy preparation method was found to be
effective in the amorphous phase formation.
The critical cooling rate was calculated as 5.35 K/s by using the so-called Barandiaran and Colmenero method which was found to be comparable to the best glass former known to date.
The isothermal crystallization kinetics of the alloy was studied at temperatures
chosen in the supercooled liquid region and above the first crystallization
temperature. The activation energies for glass transition and crystallization events
were determined by using different analytical methods such as Kissinger and Ozawa
methods.
The magnetic properties of the alloy in the annealed, amorphous and as-cast states
were characterized by using a vibrating sample magnetometer. The alloy was found
to have soft magnetic properties in all states, however the annealed specimen was
found to have less magnetic energy loss as compared to the others.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12608922/index.pdf |
Date | 01 September 2007 |
Creators | Aybar, Sultan |
Contributors | Akdeniz, Vedat M |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0016 seconds