The imperfections of the propagation channel due to channel fading and the self-generated noise from the RF front-end of the receiver cause errors in the received signal in electronic communication systems. When network coding is applied, more errors occur because of error propagation due to the inexact decoding process. In this dissertation we present a system called Partial Network Coding with Cooperation (PNC-COOP) for wireless ad hoc networks. It is a system which combines opportunistic network coding with decode-and-forward cooperative diversity, in order to reduce this error propagation by trading off some transmission degrees of freedom. PNC-COOP is a decentralized, energy efficient strategy which provides a substantial benefit over opportunistic network coding when transmission power is a concern. The proposed scheme is compared with both opportunistic network coding and conventional multi-hop transmission analytically and through simulation. Using a 3-hop communication scenario, in a 16-node wireless ad hoc network, it is shown that PNC-COOP improves the BER performance by 5 dB compared to opportunistic network coding. On average, it reduces the energy used by each sender node around 10% and reduces the overall transmitted energy of the network by 3.5%. When retransmission is applied, it is shown analytically that PNC-COOP performs well at relatively low to medium SNR while the throughput is comparable to that of opportunistic network coding. The effectiveness of both opportunistic network coding and PNC-COOP depends not only on the amount of network coding but also on other factors that are analyzed and discussed in this dissertation. / Graduation date: 2011 / Access restricted to the OSU Community at author's request from May 12, 2011 - May 12, 2012
Identifer | oai:union.ndltd.org:ORGSU/oai:ir.library.oregonstate.edu:1957/21313 |
Date | 12 May 2011 |
Creators | Poocharoen, Panupat |
Contributors | MagaƱa, Mario E. |
Source Sets | Oregon State University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0019 seconds